IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i5d10.1007_s11269-020-02731-0.html
   My bibliography  Save this article

Application of a Novel Jaya Algorithm Based on Chaotic Sequence and Opposition-based Learning in the Multi-objective Optimal Operation of Cascade Hydropower Stations System

Author

Listed:
  • Yiming Wei

    (Hohai University)

  • Zengchuan Dong

    (Hohai University)

Abstract

The traditional operation of the cascade hydropower stations system (CHPS) mainly focus on the maximization of power generation benefits, but ignores the interference of CHPS operation to the river ecosystem, therefore, carrying out the multi-objective optimal operation (MOOP) of CHPS considering ecological demands is crucial. In this paper, a MOOP model considering the ecological objective is established. To effectively solve the MOOP problems, a novel multi-objective Jaya algorithm (MOCOM-Jaya) is proposed, where the quality of the initial population is enhanced based on the chaotic sequence, the later disturbance term and Gaussian mutation are incorporated to improve the local search ability, the elite opposition-based learning is adopted to broaden the optimization space. The proposed algorithm is applied to the study of MOOP of CHPS in the Wujiang river, and the results show that compared with MOPSO and NSGA-II, MOCOM-Jaya can gain the solution set with better convergence and distribution for the MOOP. The competition relationship between the power generation objective (PGO) and the ecological objective (ECO) is revealed based on the partial replacement ratio method. The results show that the competitiveness of PGO and ECO experienced a trade lead with the increase of power generation. The mean competitiveness ratios of PGO to ECO ( C P R P − E ¯ $\overline {CP{R_{P - E}}} $ ) in three typical years (dry, normal, wet) are 3.22, 3.17 and 3.15, indicating that the PGO is dominant in the competition with the ECO as a whole.

Suggested Citation

  • Yiming Wei & Zengchuan Dong, 2021. "Application of a Novel Jaya Algorithm Based on Chaotic Sequence and Opposition-based Learning in the Multi-objective Optimal Operation of Cascade Hydropower Stations System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1397-1413, March.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-020-02731-0
    DOI: 10.1007/s11269-020-02731-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02731-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02731-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yao-Yao & Zhou, Jian-Zhong & Xiang, Xiu-Qiao & Chen, Heng & Qin, Hui, 2009. "Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3169-3176.
    2. Sichilalu, Sam & Wamalwa, Fhazhil & Akinlabi, Esther T., 2019. "Optimal control of wind-hydrokinetic pumpback hydropower plant constrained with ecological water flows," Renewable Energy, Elsevier, vol. 138(C), pages 54-69.
    3. K. Hassaballah & A. Jonoski & I. Popescu & D. Solomatine, 2012. "Model-Based Optimization of Downstream Impact during Filling of a New Reservoir: Case Study of Mandaya/Roseires Reservoirs on the Blue Nile River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 273-293, January.
    4. Xiang Yu & Hui Sun & Hui Wang & Zuhan Liu & Jia Zhao & Tianhui Zhou & Hui Qin, 2016. "Multi-Objective Sustainable Operation of the Three Gorges Cascaded Hydropower System Using Multi-Swarm Comprehensive Learning Particle Swarm Optimization," Energies, MDPI, vol. 9(6), pages 1-18, June.
    5. Shi-Mei Choong & A. El-Shafie & W. H. M. Wan Mohtar, 2017. "Optimisation of Multiple Hydropower Reservoir Operation Using Artificial Bee Colony Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1397-1411, March.
    6. Hu Hu & Kan Yang & Lyuwen Su & Zhe Yang, 2019. "A Novel Adaptive Multi-Objective Particle Swarm Optimization Based on Decomposition and Dominance for Long-term Generation Scheduling of Cascade Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4007-4026, September.
    7. Matthew Deitch & Adina Merenlender & Shane Feirer, 2013. "Cumulative Effects of Small Reservoirs on Streamflow in Northern Coastal California Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5101-5118, December.
    8. Rao, R. Venkata & Saroj, Ankit, 2017. "Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm," Energy, Elsevier, vol. 128(C), pages 785-800.
    9. Aida Tayebiyan & Thamer Ahmed Mohammed Ali & Abdul Halim Ghazali & M. A. Malek, 2016. "Optimization of Exclusive Release Policies for Hydropower Reservoir Operation by Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1203-1216, February.
    10. Jiang, Zhiqiang & Ji, Changming & Qin, Hui & Feng, Zhongkai, 2018. "Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs," Energy, Elsevier, vol. 148(C), pages 309-323.
    11. Changwen Li & Ling Kang, 2014. "A New Modified Tennant Method with Spatial-Temporal Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 4911-4926, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saaed Farzin & Alcigeimes B. Celeste & Ahmad-El Shafie, 2018. "Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4681-4706, November.
    3. Sedighkia, Mahdi & Abdoli, Asghar, 2023. "An optimization approach for managing environmental impacts of generating hydropower on fish biodiversity," Renewable Energy, Elsevier, vol. 218(C).
    4. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    5. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.
    6. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    7. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    8. James Stoutenborough & Arnold Vedlitz, 2014. "Public Attitudes Toward Water Management and Drought in the United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 697-714, February.
    9. Lijun Jiao & Ruimin Liu & Linfang Wang & Lin Li & Leiping Cao, 2021. "Evaluating Spatiotemporal Variations in the Impact of Inter-basin Water Transfer Projects in Water-receiving Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5409-5429, December.
    10. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    11. Hatamkhani, Amir & Moridi, Ali & Haghighi, Ali Torabi, 2023. "Incorporating ecosystem services value into the optimal development of hydropower projects," Renewable Energy, Elsevier, vol. 203(C), pages 495-505.
    12. Yang Peng & Changming Ji & Roy Gu, 2014. "A Multi-Objective Optimization Model for Coordinated Regulation of Flow and Sediment in Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4019-4033, September.
    13. Xiaokuan Ni & Zengchuan Dong & Wei Xie & Shujun Wu & Mufeng Chen & Hongyi Yao & Wenhao Jia, 2022. "A Practical Approach for Environmental Flow Calculation to Support Ecosystem Management in Wujiang River, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    14. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    15. Smitha, T.V. & Nagaraja, K.V., 2019. "Application of automated cubic-order mesh generation for efficient energy transfer using parabolic arcs for microwave problems," Energy, Elsevier, vol. 168(C), pages 1104-1118.
    16. Di Zhu & Yadong Mei & Xinfa Xu & Zhangjun Liu & Zhenhui Wu & Hao Cai, 2021. "Optimal Operation of a Parallel Multireservoir System for Flood Control using a Stagewise Compensation Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1689-1710, April.
    17. Shengli Liao & Yan Zhang & Jie Liu & Benxi Liu & Zhanwei Liu, 2021. "Short-Term Peak-Shaving Operation of Single-Reservoir and Multicascade Hydropower Plants Serving Multiple Power Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 689-705, January.
    18. Yury Sekretarev & Tatyana Myateg & Aminjon Gulakhmadov & Murodbek Safaraliev & Sergey Mitrofanov & Natalya Zubova & Olga Atamanova & Xi Chen, 2022. "Models of Optimal Operating Modes of the Water-Economic Complex on the Basis of Hydro Resource Price Evaluation," Mathematics, MDPI, vol. 10(5), pages 1-30, February.
    19. Lingquan Dai & Huichao Dai & Haibo Liu & Yu Wang & Jiali Guo & Zhuosen Cai & Chenxi Mi, 2020. "Development of an Optimal Model for the Xiluodu-Xiangjiaba Cascade Reservoir System Considering the Downstream Environmental Flow," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    20. Zhongzheng He & Chao Wang & Yongqiang Wang & Hairong Zhang & Heng Yin, 2022. "An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1481-1497, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-020-02731-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.