IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i14d10.1007_s11269-021-02986-1.html
   My bibliography  Save this article

Application of Data Envelopment Analysis to Evaluate Investments in the Modernization of Collective Management Irrigation Systems in Valencia (Spain)

Author

Listed:
  • Marta García-Mollá

    (Universitat Politècnica de València)

  • Rosa Puertas

    (Universitat Politècnica de València)

  • Carles Sanchis-Ibor

    (Universitat Politècnica de València)

Abstract

Climate change and increased competition for water resources are generating growing concern about how to improve water-use efficiency in agriculture. In turn, this has prompted substantial investments in the installation of water-saving technologies in irrigation systems. The first aim of this research is to use data envelopment analysis to quantify, in terms of gross water savings (GWS), the local-scale efficiency of the irrigation policies adopted in an area of Spain suffering from a structural water deficit. Second, the cross-efficiency method is used to produce a ranking of the irrigation organizations analysed, in order to identify patterns of water-use efficiency performance that can guide future lines of investment. The results reveal that water-use efficiency prior to modernization is a key determinant of the efficiency achieved in terms of GWS at local scale. However, the investments targeted at irrigation modernization often have objectives other than water savings. These and other aspects should be taken into account when allocating public funds to irrigation modernization.

Suggested Citation

  • Marta García-Mollá & Rosa Puertas & Carles Sanchis-Ibor, 2021. "Application of Data Envelopment Analysis to Evaluate Investments in the Modernization of Collective Management Irrigation Systems in Valencia (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5011-5027, November.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02986-1
    DOI: 10.1007/s11269-021-02986-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02986-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02986-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julio Berbel & Carlos Gutiérrez-Martín & Juan Rodríguez-Díaz & Emilio Camacho & Pilar Montesinos, 2015. "Literature Review on Rebound Effect of Water Saving Measures and Analysis of a Spanish Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 663-678, February.
    2. Guofeng Wang & Nan Lin & Xiaoxue Zhou & Zhihui Li & Xiangzheng Deng, 2018. "Three-Stage Data Envelopment Analysis of Agricultural Water Use Efficiency: A Case Study of the Heihe River Basin," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    3. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    4. Daohan Huang & Zihao Shen & Chengshuang Sun & Guijun Li, 2021. "Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1673-1688, April.
    5. Mita Bagchi & Sanzidur Rahman & Yao Shunbo, 2019. "Growth in Agricultural Productivity and Its Components in Bangladeshi Regions (1987–2009): An Application of Bootstrapped Data Envelopment Analysis (DEA)," Economies, MDPI, vol. 7(2), pages 1-16, May.
    6. Herrera, Santiago & Pang, Gaobo, 2005. "Efficiency of public spending in developing countries : an efficiency frontier approach," Policy Research Working Paper Series 3645, The World Bank.
    7. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    8. Pereira, Helga & Marques, Rui Cunha, 2017. "An analytical review of irrigation efficiency measured using deterministic and stochastic models," Agricultural Water Management, Elsevier, vol. 184(C), pages 28-35.
    9. Ranu Sinha & Michael Gilmont & Robert Hope & Simon Dadson, 2019. "Understanding the effectiveness of investments in irrigation system modernization: evidence from Madhya Pradesh, India," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 35(5), pages 847-870, September.
    10. Julio Berbel & Alfonso Expósito & Carlos Gutiérrez-Martín & Luciano Mateos, 2019. "Effects of the Irrigation Modernization in Spain 2002–2015," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1835-1849, March.
    11. Bai, Shanshan & Kang, Yaohu & Wan, Shuqin, 2020. "Drip fertigation regimes for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Xinchun Cao & Jianfeng Xiao & Mengyang Wu & Wen Zeng & Xuan Huang, 2021. "Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2519-2535, June.
    13. K. Hafsal & Anandarao Suvvari & S. Raja Sethu Durai, 2020. "Efficiency of Indian banks with non-performing assets: evidence from two-stage network DEA," Future Business Journal, Springer, vol. 6(1), pages 1-9, December.
    14. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    15. Mehdi Toloo & Mona Barat & Atefeh Masoumzadeh, 2015. "Selective measures in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 623-642, March.
    16. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    17. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    18. Yin, Pengzhen & Chu, Junfei & Wu, Jie & Ding, Jingjing & Yang, Min & Wang, Yuhong, 2020. "A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective," Omega, Elsevier, vol. 93(C).
    19. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    20. Li, Nan & Jiang, Yuqing & Mu, Hailin & Yu, Zhixin, 2018. "Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA)," Energy, Elsevier, vol. 164(C), pages 1145-1160.
    21. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    22. Nazari, Bijan & Liaghat, Abdolmajid & Akbari, Mohammad Reza & Keshavarz, Marzieh, 2018. "Irrigation water management in Iran: Implications for water use efficiency improvement," Agricultural Water Management, Elsevier, vol. 208(C), pages 7-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aikaterini Lyra & Athanasios Loukas, 2023. "Simulation and Evaluation of Water Resources Management Scenarios Under Climate Change for Adaptive Management of Coastal Agricultural Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2625-2642, May.
    2. Jay Nigam & Totakura Bangar Raju & Ramachandra K. Pavan Kumar Pannala, 2023. "Performance Evaluation of Irrigation Canals Using Data Envelopment Analysis for Efficient and Sustainable Irrigation Management in Jharkhand State, India," Energies, MDPI, vol. 16(14), pages 1-14, July.
    3. Puertas, Rosa & Guaita-Martinez, José M. & Marti, Luisa, 2023. "Analysis of the impact of university policies on society's environmental perception," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
    4. Rosa Puertas & Luisa Marti, 2023. "Regional analysis of the sustainable development of two Mediterranean countries: Spain and Italy," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 797-811, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    2. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    3. da Silva, Aneirson Francisco & Miranda, Rafael de Carvalho & Marins, Fernando Augusto Silva & Dias, Erica Ximenes, 2024. "A new multiple criteria data envelopment analysis with variable return to scale: Applying bi-dimensional representation and super-efficiency analysis," European Journal of Operational Research, Elsevier, vol. 314(1), pages 308-322.
    4. Alessandra Cepparulo & Gilles Mourre, 2020. "How and How Much? The Growth-Friendliness of Public Spending through the Lens," European Economy - Discussion Papers 132, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    5. Peyrache, Antonio & Rose, Christiern & Sicilia, Gabriela, 2020. "Variable selection in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 282(2), pages 644-659.
    6. Ti-An Chen, 2022. "Business Performance Evaluation for Tourism Factory: Using DEA Approach and Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    7. Tumaniants, Karen A. (Туманянц, Карэн) & Sesina, Julia E. (Сесина, Юлия), 2017. "Social Expenditures of Russian Regions in Terms of “Input-Output” [Расходы На Социальную Политику Российских Регионов В Координатах «Затраты — Результат»]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 5, pages 128-149, October.
    8. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2017. "Assessing the financial and outreach efficiency of microfinance institutions: Do age and size matter?," Journal of Multinational Financial Management, Elsevier, vol. 40(C), pages 63-76.
    9. Qing Yang & Lingmei Fu & Xingxing Liu & Mengying Cheng, 2018. "Evaluating the Efficiency of Municipal Solid Waste Management in China," IJERPH, MDPI, vol. 15(11), pages 1-23, November.
    10. Guilhermina Rego & Rui Nunes & José Costa, 2010. "The challenge of corporatisation: the experience of Portuguese public hospitals," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(4), pages 367-381, August.
    11. Hsiao-Yen Mao & Wen-Min Lu & Hsin-Yen Shieh, 2023. "Exploring the Influence of Environmental Investment on Multinational Enterprises’ Performance from the Sustainability and Marketability Efficiency Perspectives," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    12. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    13. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    14. Ibrahim Alnafrah, 2021. "Efficiency evaluation of BRICS’s national innovation systems based on bias-corrected network data envelopment analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-28, December.
    15. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    16. Bresciani, Stefano & Puertas, Rosa & Ferraris, Alberto & Santoro, Gabriele, 2021. "Innovation, environmental sustainability and economic development: DEA-Bootstrap and multilevel analysis to compare two regions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Perrigot, Rozenn & Barros, Carlos Pestana, 2008. "Technical efficiency of French retailers," Journal of Retailing and Consumer Services, Elsevier, vol. 15(4), pages 296-305.
    18. Sheng, Jichuan & Qiu, Wenge, 2022. "Water-use technical efficiency and income: Evidence from China's South-North Water Transfer Project," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    19. Wu, Jie & Xu, Guangcheng & Zhu, Qingyuan & Zhang, Chaochao, 2021. "Two-stage DEA models with fairness concern: Modelling and computational aspects," Omega, Elsevier, vol. 105(C).
    20. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02986-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.