IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v25y2016i1p143-161.html
   My bibliography  Save this article

Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem

Author

Listed:
  • Patrick Vetter
  • Wolfgang Schmid
  • Reimund Schwarze

Abstract

The Net Ecosystem Exchange describes the net carbon dioxide flux between an ecosystem and the atmosphere and is a key quantity in climate change studies and in political negotiations. This paper provides a spatio-temporal statistical framework, which is able to infer the Net Ecosystem Exchange from remotely-sensed carbon dioxide ground concentrations together with data on the Normalized Difference Vegetation Index, the Gross Primary Production and the land cover classification. The model is based on spatial and temporal latent random effects, that act as space–time varying coefficients, which allows for a flexible modeling of the spatio-temporal auto- and cross-correlation structure. The intra- and inter-annual variations of the Net Ecosystem Exchange are evaluated and dynamic maps are provided on a nearly global grid and in intervals of 16 days. Copyright Springer-Verlag Berlin Heidelberg 2016

Suggested Citation

  • Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2016. "Spatio-temporal statistical analysis of the carbon budget of the terrestrial ecosystem," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 143-161, March.
  • Handle: RePEc:spr:stmapp:v:25:y:2016:i:1:p:143-161
    DOI: 10.1007/s10260-015-0342-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-015-0342-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-015-0342-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wenceslao González‐Manteiga & Rosa M. Crujeiras & Matthias Katzfuss & Noel Cressie, 2012. "Bayesian hierarchical spatio‐temporal smoothing for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 23(1), pages 94-107, February.
    2. Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2013. "Efficient Approximation of the Spatial Covariance Function for Large Datasets - Analysis of Atmospheric CO2 Concentrations," Discussion Paper Series RECAP15 009, RECAP15, European University Viadrina, Frankfurt (Oder).
    3. Finazzi, Francesco & Fassò, Alessandro, 2014. "D-STEM: A Software for the Analysis and Mapping of Environmental Space-Time Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 62(i06).
    4. Kanti Mardia & Colin Goodall & Edwin Redfern & Francisco Alonso, 1998. "The Kriged Kalman filter," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 217-282, December.
    5. Matthias Katzfuss & Noel Cressie, 2011. "Spatio‐temporal smoothing and EM estimation for massive remote‐sensing data sets," Journal of Time Series Analysis, Wiley Blackwell, vol. 32, pages 430-446, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2016. "Spatio-temporal statistical assessment of anthropogenic CO2 emissions from satellite data," Discussion Paper Series RECAP15 24, RECAP15, European University Viadrina, Frankfurt (Oder).
    2. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    3. Alessandro Fassò & Abdel El-Shaarawi & Maria Ranalli, 2016. "Advanced methods for space–time environmental data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 1-4, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick Vetter & Wolfgang Schmid & Reimund Schwarze, 2016. "Spatio-temporal statistical assessment of anthropogenic CO2 emissions from satellite data," Discussion Paper Series RECAP15 24, RECAP15, European University Viadrina, Frankfurt (Oder).
    2. Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
    3. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    4. Guanzhou Wei & Xiao Liu & Russell Barton, 2024. "An extended PDE‐based statistical spatio‐temporal model that suppresses the Gibbs phenomenon," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    5. Alessandro Fassò & Francesco Finazzi & Ferdinand Ndongo, 2016. "European Population Exposure to Airborne Pollutants Based on a Multivariate Spatio-Temporal Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 492-511, September.
    6. Lara Fontanella & Luigi Ippoliti, 2003. "Dynamic models for space-time prediction via Karhunen-Loève expansion," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 61-78, February.
    7. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    8. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    9. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    10. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    11. Ashton Wiens & Douglas Nychka & William Kleiber, 2020. "Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    12. Paolo Maranzano & Matteo Maria Pelagatti, 2022. "Spatio-temporal Event Studies for Air Quality Assessment under Cross-sectional Dependence," Papers 2210.17529, arXiv.org.
    13. Francesco Finazzi, 2020. "Fulfilling the information need after an earthquake: statistical modelling of citizen science seismic reports for predicting earthquake parameters in near realtime," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 857-882, June.
    14. Candace Berrett & William F. Christensen & Stephan R. Sain & Nathan Sandholtz & David W. Coats & Claudia Tebaldi & Hedibert F. Lopes, 2020. "Modeling sea‐level processes on the U.S. Atlantic Coast," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    15. Zilber, Daniel & Katzfuss, Matthias, 2021. "Vecchia–Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    16. K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
    17. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
    18. Karl Pazdernik & Ranjan Maitra & Douglas Nychka & Stephan Sain, 2018. "Reduced Basis Kriging for Big Spatial Fields," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 280-300, August.
    19. Sandy Burden & Noel Cressie & David G. Steel, 2015. "The SAR Model for Very Large Datasets: A Reduced Rank Approach," Econometrics, MDPI, vol. 3(2), pages 1-22, May.
    20. Gevorgyan Ruben & Melikyan Narine, 2004. "Missing Data Problem and the Empirical Yield Curve Analysis. An Example of T-bills Market in Armenia," EERC Working Paper Series 04-03e, EERC Research Network, Russia and CIS.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:25:y:2016:i:1:p:143-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.