IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v4y2023i4d10.1007_s43069-023-00246-z.html
   My bibliography  Save this article

New Ways in Municipal Flood Mitigation: a Mixed-Integer Programming Approach and its Practical Application

Author

Listed:
  • Jan Boeckmann

    (Weihenstephan-Triesdorf University of Applied Sciences
    Technical University of Munich)

  • Clemens Thielen

    (Weihenstephan-Triesdorf University of Applied Sciences
    Technical University of Munich)

Abstract

Adapting to the consequences of climate change is one of the central challenges faced by humanity in the next decades. One of these consequences are intense heavy rain events, which can cause severe damage to buildings due to flooding. In this paper, we present the first use of optimization techniques that scales well enough to be applicable for supporting decision-making in planning precautionary measures for flash floods caused by heavy rain events in realistic scenarios. Our mixed-integer programming model has been implemented as an innovative decision support tool in the form of a web application, which has already been used by more than 30 engineering offices, municipalities, universities, and other institutions. The model aims to minimize the damage caused in the case of a heavy rain event by taking best-possible actions subject to a limited budget and constraints on the cooperation of residents. We further present an efficient, graph-based representation and preprocessing of the surface terrain, a combinatorial algorithm for computing an initial solution of the mixed-integer program, and computational results obtained on real-word data from different municipalities.

Suggested Citation

  • Jan Boeckmann & Clemens Thielen, 2023. "New Ways in Municipal Flood Mitigation: a Mixed-Integer Programming Approach and its Practical Application," SN Operations Research Forum, Springer, vol. 4(4), pages 1-68, December.
  • Handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00246-z
    DOI: 10.1007/s43069-023-00246-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-023-00246-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-023-00246-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Che & Larry Mays, 2015. "Development of an Optimization/Simulation Model for Real-Time Flood-Control Operation of River-Reservoirs Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3987-4005, September.
    2. Michelle Woodward & Zoran Kapelan & Ben Gouldby, 2014. "Adaptive Flood Risk Management Under Climate Change Uncertainty Using Real Options and Optimization," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 75-92, January.
    3. Zwaneveld, P. & Verweij, G. & van Hoesel, S., 2018. "Safe dike heights at minimal costs: An integer programming approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 294-301.
    4. Ruud Brekelmans & Dick den Hertog & Kees Roos & Carel Eijgenraam, 2012. "Safe Dike Heights at Minimal Costs: The Nonhomogeneous Case," Operations Research, INFORMS, vol. 60(6), pages 1342-1355, December.
    5. Soheyl Khalilpourazari & Seyed Hamid Reza Pasandideh, 2021. "Designing emergency flood evacuation plans using robust optimization and artificial intelligence," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 640-677, April.
    6. Michael Holzhauser & Sven O. Krumke & Clemens Thielen, 2017. "Maximum flows in generalized processing networks," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1226-1256, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klerk, Wouter Jan & Kanning, Wim & Kok, Matthijs & Wolfert, Rogier, 2021. "Optimal planning of flood defence system reinforcements using a greedy search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    3. Graeme Guthrie, 2019. "Real options analysis of climate-change adaptation: investment flexibility and extreme weather events," Climatic Change, Springer, vol. 156(1), pages 231-253, September.
    4. Alessio Ciullo & Jan H. Kwakkel & Karin M. De Bruijn & Neelke Doorn & Frans Klijn, 2020. "Efficient or Fair? Operationalizing Ethical Principles in Flood Risk Management: A Case Study on the Dutch‐German Rhine," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1844-1862, September.
    5. Thomas David Pol & Jochen Hinkel, 2019. "Uncertainty representations of mean sea-level change: a telephone game?," Climatic Change, Springer, vol. 152(3), pages 393-411, March.
    6. G. Guthrie, 2021. "Adapting to Rising Sea Levels: How Short-Term Responses Complement Long-Term Investment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 635-668, April.
    7. Peter Zwaneveld & Gerard Verweij, 2018. "Economic Decision Problems in Multi-Level Flood Prevention: a new graph-based approach used for real world applications," CPB Discussion Paper 380, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    9. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.
    10. Postek, Krzysztof & den Hertog, Dick & Kind, J. & Pustjens, Chris, 2016. "Adjustable Robust Strategies for Flood Protection," Discussion Paper 2016-038, Tilburg University, Center for Economic Research.
    11. João Marques & Maria Cunha & Dragan Savić & Orazio Giustolisi, 2017. "Water Network Design Using a Multiobjective Real Options Framework," Journal of Optimization, Hindawi, vol. 2017, pages 1-13, January.
    12. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    13. Rui Shi & Benjamin F. Hobbs & Huai Jiang, 2019. "When can decision analysis improve climate adaptation planning? Two procedures to match analysis approaches with adaptation problems," Climatic Change, Springer, vol. 157(3), pages 611-630, December.
    14. Lihua Chen & Jing Yu & Jin Teng & Hang Chen & Xiang Teng & Xuefang Li, 2022. "Optimizing Joint Flood Control Operating Charts for Multi–reservoir System Based on Multi–group Piecewise Linear Function," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3305-3325, July.
    15. Chen Chen & Yanbin Yuan & Xiaohui Yuan, 2017. "An Improved NSGA-III Algorithm for Reservoir Flood Control Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4469-4483, November.
    16. Babaeian, Fariba & Delavar, Majid & Morid, Saeed & Srinivasan, Raghavan, 2021. "Robust climate change adaptation pathways in agricultural water management," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Discussion Paper 2012-079, Tilburg University, Center for Economic Research.
    18. Han, Bing & Zhang, Ying & Wang, Song & Park, Yongshin, 2023. "The efficient and stable planning for interrupted supply chain with dual‐sourcing strategy: a robust optimization approach considering decision maker's risk attitude," Omega, Elsevier, vol. 115(C).
    19. Saeid Janizadeh & Mehdi Vafakhah & Zoran Kapelan & Naghmeh Mobarghaee Dinan, 2021. "Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4621-4646, October.
    20. Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:4:y:2023:i:4:d:10.1007_s43069-023-00246-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.