IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v117y2018i3d10.1007_s11192-018-2941-1.html
   My bibliography  Save this article

A bibliometric method for assessing technological maturity: the case of additive manufacturing

Author

Listed:
  • René Lezama-Nicolás

    (Tecnologico de Monterrey)

  • Marisela Rodríguez-Salvador

    (Tecnologico de Monterrey)

  • Rosa Río-Belver

    (University of the Basque Country UPV/EHU, Basque Country)

  • Iñaki Bildosola

    (University of the Basque Country UPV/EHU, Basque Country)

Abstract

While novel technologies have tremendous competitive potential, they also involve certain risks. Maturity assessment analyzes how well a technological development can fulfill an expected task. The technology readiness level (TRL) has been considered to be one of the most promising approaches for addressing technological maturity. Nonetheless, its assessment requires opinions of the experts, which is costly and implies the risk of personal bias. To fill this gap, this paper presents a Bibliometric Method for Assessing Technological Maturity (BIMATEM). It is a repeatable framework that assesses maturity quantitatively. Our method is based on the assumption that each technology life cycle stage can be matched to technology records contained in scientific literature, patents, and news databases. The scientific papers and patent records of mature technologies display a logistic growth behavior, while news records follow a hype-type behavior. BIMATEM determines the maturity level by curve fitting technology records to these behaviors. To test our approach, BIMATEM was applied to additive manufacturing (AM) technologies. Our results revealed that material extrusion, material jetting, powder bed fusion and vat photopolymerization are the most mature AM technologies with TRL between 6 and 7, followed by directed energy deposition with TRL between 4 and 5, and binder jetting and sheet lamination, the least mature, with TRL between 1 and 2. BIMATEM can be used by competitive technology intelligence professionals, policymakers, and further decision makers whose main interests include assessing the risk of implementing new technologies. Future research can focus on testing the method with regard to altmetrics.

Suggested Citation

  • René Lezama-Nicolás & Marisela Rodríguez-Salvador & Rosa Río-Belver & Iñaki Bildosola, 2018. "A bibliometric method for assessing technological maturity: the case of additive manufacturing," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1425-1452, December.
  • Handle: RePEc:spr:scient:v:117:y:2018:i:3:d:10.1007_s11192-018-2941-1
    DOI: 10.1007/s11192-018-2941-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2941-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2941-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marisela Rodríguez-Salvador & Rosa María Rio-Belver & Gaizka Garechana-Anacabe, 2017. "Scientometric and patentometric analyses to determine the knowledge landscape in innovative technologies: The case of 3D bioprinting," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-22, June.
    2. Yoshiko Okubo, 1997. "Bibliometric Indicators and Analysis of Research Systems: Methods and Examples," OECD Science, Technology and Industry Working Papers 1997/1, OECD Publishing.
    3. Gao, Lidan & Porter, Alan L. & Wang, Jing & Fang, Shu & Zhang, Xian & Ma, Tingting & Wang, Wenping & Huang, Lu, 2013. "Technology life cycle analysis method based on patent documents," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 398-407.
    4. Gaizka Garechana & Rosa Río-Belver & Iñaki Bildosola & Marisela Rodríguez Salvador, 2017. "Effects of innovation management system standardization on firms: evidence from text mining annual reports," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1987-1999, June.
    5. Chan-Yuan Wong & Kim-Leng Goh, 2010. "Modeling the behaviour of science and technology: self-propagating growth in the diffusion process," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 669-686, September.
    6. Marco Campani & Ruggero Vaglio, 2015. "A simple interpretation of the growth of scientific/technological research impact leading to hype-type evolution curves," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 75-83, April.
    7. Haupt, Reinhard & Kloyer, Martin & Lange, Marcus, 2007. "Patent indicators for the technology life cycle development," Research Policy, Elsevier, vol. 36(3), pages 387-398, April.
    8. Dedehayir, Ozgur & Steinert, Martin, 2016. "The hype cycle model: A review and future directions," Technological Forecasting and Social Change, Elsevier, vol. 108(C), pages 28-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesus S. Alejandro-Cruz & Rosa M. Rio-Belver & Yara C. Almanza-Arjona & Alejandro Rodriguez-Andara, 2019. "Towards a Science Map on Sustainability in Higher Education," Sustainability, MDPI, vol. 11(13), pages 1-18, June.
    2. André Souza Oliveira & Raphael Oliveira dos Santos & Bruno Caetano dos Santos Silva & Lilian Lefol Nani Guarieiro & Matthias Angerhausen & Uwe Reisgen & Renelson Ribeiro Sampaio & Bruna Aparecida Souz, 2021. "A Detailed Forecast of the Technologies Based on Lifecycle Analysis of GMAW and CMT Welding Processes," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    3. Kowalski Arkadiusz Michał & Mackiewicz Marta, 2022. "Behavioral additionality: the role of cooperation with research institutions in fostering technological maturity of enterprises," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(2), pages 179-191, June.
    4. Yuan, Xiaodong & Cai, Yuchen, 2021. "Forecasting the development trend of low emission vehicle technologies: Based on patent data," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Bonnin Roca, Jaime, 2022. "Teaching technological forecasting to undergraduate students: a reflection on challenges and opportunities," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    6. Sinigaglia, Tiago & Eduardo Santos Martins, Mario & Cezar Mairesse Siluk, Julio, 2022. "Technological evolution of internal combustion engine vehicle: A patent data analysis," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    2. Chang, Shu-Hao & Fan, Chin-Yuan, 2016. "Identification of the technology life cycle of telematics: A patent-based analytical perspective," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 1-10.
    3. Xi Yang & Xiang Yu & Xin Liu, 2018. "Obtaining a Sustainable Competitive Advantage from Patent Information: A Patent Analysis of the Graphene Industry," Sustainability, MDPI, vol. 10(12), pages 1-25, December.
    4. Myoungjae Choi & Sun-Hi Yoo & Jongtaik Lee & Jeongsub Choi & Byunghoon Kim, 2022. "A modified gamma/Gompertz/NBD model for estimating technology lifetime," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5731-5751, October.
    5. Perruchas, François & Consoli, Davide & Barbieri, Nicolò, 2020. "Specialisation, diversification and the ladder of green technology development," Research Policy, Elsevier, vol. 49(3).
    6. Serkan Altuntas & Zulfiye Erdogan & Turkay Dereli, 2020. "A clustering-based approach for the evaluation of candidate emerging technologies," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1157-1177, August.
    7. Xi, Xi & Ren, Feifei & Yu, Lean & Yang, Jing, 2023. "Detecting the technology's evolutionary pathway using HiDS-trait-driven tech mining strategy," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    8. Nicoló Barbieri & François Perruchas & Davide Consoli, 2020. "Specialization, Diversification, and Environmental Technology Life Cycle," Economic Geography, Taylor & Francis Journals, vol. 96(2), pages 161-186, March.
    9. Block, Carolin & Wustmans, Michael & Laibach, Natalie & Bröring, Stefanie, 2021. "Semantic bridging of patents and scientific publications – The case of an emerging sustainability-oriented technology," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Lin, Deming & Liu, Wenbin & Guo, Yinxin & Meyer, Martin, 2021. "Using technological entropy to identify technology life cycle," Journal of Informetrics, Elsevier, vol. 15(2).
    11. Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
    12. Noushin Islam & Malindu Sandanayake & Shobha Muthukumaran & Dimuth Navaratna, 2024. "Review on Sustainable Construction and Demolition Waste Management—Challenges and Research Prospects," Sustainability, MDPI, vol. 16(8), pages 1-30, April.
    13. Nils Grashof, 2020. "Sinking or swimming in the cluster labour pool? A firm-specific analysis of the effect of specialized labour," Jena Economics Research Papers 2020-006, Friedrich-Schiller-University Jena.
    14. Albert, Till & Moehrle, Martin G. & Meyer, Stefan, 2015. "Technology maturity assessment based on blog analysis," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 196-209.
    15. White, Gareth R.T. & Samuel, Anthony, 2019. "Programmatic Advertising: Forewarning and avoiding hype-cycle failure," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 157-168.
    16. Giones, Ferran & Brem, Alexander, 2017. "From toys to tools: The co-evolution of technological and entrepreneurial developments in the drone industry," Business Horizons, Elsevier, vol. 60(6), pages 875-884.
    17. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    18. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    19. Yun-Wen Chuang & Ling-Chu Lee & Wen-Chi Hung & Pin-Hua Lin, 2010. "Forging Into The Innovation Lead — A Comparative Analysis Of Scientific Capacity," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 511-529.
    20. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:117:y:2018:i:3:d:10.1007_s11192-018-2941-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.