IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v105y2015i3d10.1007_s11192-015-1630-6.html
   My bibliography  Save this article

Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states

Author

Listed:
  • Loet Leydesdorff

    (University of Amsterdam)

Abstract

Socio-cognitive action reproduces and changes both social and cognitive structures. The analytical distinction between these dimensions of structure provides us with richer models of scientific development. In this study, I assume that (1) social structures organize expectations into belief structures that can be attributed to individuals and communities; (2) expectations are specified in scholarly literature; and (3) intellectually the sciences (disciplines, specialties) tend to self-organize as systems of rationalized expectations. Whereas social organizations remain localized, academic writings can circulate, and expectations can be stabilized and globalized using symbolically generalized codes of communication. The intellectual restructuring, however, remains latent as a second-order dynamics that can be accessed by participants only reflexively. Yet, the emerging “horizons of meaning” provide feedback to the historically developing organizations by constraining the possible future states as boundary conditions. I propose to model these possible future states using incursive and hyper-incursive equations from the computation of anticipatory systems. Simulations of these equations enable us to visualize the couplings among the historical—i.e., recursive—progression of social structures along trajectories, the evolutionary—i.e., hyper-incursive—development of systems of expectations at the regime level, and the incursive instantiations of expectations in actions, organizations, and texts.

Suggested Citation

  • Loet Leydesdorff, 2015. "Can intellectual processes in the sciences also be simulated? The anticipation and visualization of possible future states," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2197-2214, December.
  • Handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1630-6
    DOI: 10.1007/s11192-015-1630-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-015-1630-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-015-1630-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Loet Leydesdorff, 2001. "Technology and Culture: the Dissemination and the Potential 'Lock-In' of New Technologies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(3), pages 1-5.
    2. Arthur, W Brian, 1989. "Competing Technologies, Increasing Returns, and Lock-In by Historical Events," Economic Journal, Royal Economic Society, vol. 99(394), pages 116-131, March.
    3. Rip, Arie, 1981. "A cognitive approach to science policy," Research Policy, Elsevier, vol. 10(4), pages 294-311, October.
    4. Petra Ahrweiler, 2011. "Modelling Theory Communities in Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(4), pages 1-8.
    5. Staša Milojević, 2010. "Modes of collaboration in modern science: Beyond power laws and preferential attachment," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1410-1423, July.
    6. Loet Leydesdorff, 2010. "The communication of meaning and the structuration of expectations: Giddens' “structuration theory” and Luhmann's “self‐organization”," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 61(10), pages 2138-2150, October.
    7. Loet Leydesdorff & Stephen Bensman, 2006. "Classification and powerlaws: The logarithmic transformation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(11), pages 1470-1486, September.
    8. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    9. N. Gilbert, 1997. "A Simulation of the Structure of Academic Science," Sociological Research Online, , vol. 2(2), pages 91-105, June.
    10. Bruce Edmonds & Nigel Gilbert & Petra Ahrweiler & Andrea Scharnhorst, 2011. "Simulating the Social Processes of Science," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 14(4), pages 1-14.
    11. Peter Van Den Besselaar, 2001. "The cognitive and the social structure of STS," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(2), pages 441-460, June.
    12. Ulanowicz, Robert E., 2009. "The dual nature of ecosystem dynamics," Ecological Modelling, Elsevier, vol. 220(16), pages 1886-1892.
    13. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    14. Loet Leydesdorff, 2005. "Anticipatory Systems and the Processing of Meaning: a Simulation Study Inspired by Luhmann's Theory of Social Systems," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 8(2), pages 1-7.
    15. Loet Leydesdorff & Inga A. Ivanova, 2014. "Mutual redundancies in interhuman communication systems: Steps toward a calculus of processing meaning," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 386-399, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Coccia, 2021. "Evolution and structure of research fields driven by crises and environmental threats: the COVID-19 research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9405-9429, December.
    2. Katy Börner & Bruce Edmonds & Staša Milojević & Andrea Scharnhorst, 2017. "Editorial," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 387-390, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petersen, Alexander M. & Rotolo, Daniele & Leydesdorff, Loet, 2016. "A triple helix model of medical innovation: Supply, demand, and technological capabilities in terms of Medical Subject Headings," Research Policy, Elsevier, vol. 45(3), pages 666-681.
    2. Inga A. Ivanova & Loet Leydesdorff, 2014. "A simulation model of the Triple Helix of university–industry–government relations and the decomposition of the redundancy," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(3), pages 927-948, June.
    3. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    4. Petra Ahrweiler, 2017. "Agent-based simulation for science, technology, and innovation policy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(1), pages 391-415, January.
    5. Tay, Nicholas S.P. & Lusch, Robert F., 2005. "A preliminary test of Hunt's General Theory of Competition: using artificial adaptive agents to study complex and ill-defined environments," Journal of Business Research, Elsevier, vol. 58(9), pages 1155-1168, September.
    6. David O'Sullivan & Mordechai Haklay, 2000. "Agent-Based Models and Individualism: Is the World Agent-Based?," Environment and Planning A, , vol. 32(8), pages 1409-1425, August.
    7. Michel Zitt, 2015. "Meso-level retrieval: IR-bibliometrics interplay and hybrid citation-words methods in scientific fields delineation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2223-2245, March.
    8. Lengyel, Balázs & Leydesdorff, Loet, 2015. "The Effects of FDI on Innovation Systems in Hungarian Regions: Where is the Synergy Generated?," MPRA Paper 73945, University Library of Munich, Germany.
    9. Marc R.H. Roedenbeck & Barnas Nothnagel, 2007. "Rethinking Lock-in and Locking: Adopters Facing Network Effects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(1), pages 1-4.
    10. Albert Faber & Koen Frenken, 2008. "Models in evolutionary economics and environmental policy: Towards an evolutionary environmental economics," Innovation Studies Utrecht (ISU) working paper series 08-15, Utrecht University, Department of Innovation Studies, revised Apr 2008.
    11. Howitt, Peter & Clower, Robert, 2000. "The emergence of economic organization," Journal of Economic Behavior & Organization, Elsevier, vol. 41(1), pages 55-84, January.
    12. Isaac Naveh & Ron Sun, 2006. "A cognitively based simulation of academic science," Computational and Mathematical Organization Theory, Springer, vol. 12(4), pages 313-337, December.
    13. Francisco Grimaldo & Mario Paolucci & Jordi Sabater-Mir, 2018. "Reputation or peer review? The role of outliers," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1421-1438, September.
    14. Fetta, A.G. & Harper, P.R. & Knight, V.A. & Vieira, I.T. & Williams, J.E., 2012. "On the Peter Principle: An agent based investigation into the consequential effects of social networks and behavioural factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2898-2910.
    15. Lafond, François, 2015. "Self-organization of knowledge economies," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 150-165.
    16. Zhangqi Zhong & Lingyun He, 2022. "Macro-Regional Economic Structural Change Driven by Micro-founded Technological Innovation Diffusion: An Agent-Based Computational Economic Modeling Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 471-525, February.
    17. J. Barkley Rosser, 1999. "On the Complexities of Complex Economic Dynamics," Journal of Economic Perspectives, American Economic Association, vol. 13(4), pages 169-192, Fall.
    18. Aggio, Gustavo de Oliveira, 2011. "Emergência de convenções sociais - Uma análise a partir da simulação de interações descentralizadas caracterizadas pela disposição a imitação de comportamento," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(1), March.
    19. Floris J. Huétink & Alexander van der Vooren & Floortje Alkemade, 2009. "Initial infrastructure development strategies for the transition to sustainable mobility," Innovation Studies Utrecht (ISU) working paper series 09-05, Utrecht University, Department of Innovation Studies, revised Mar 2009.
    20. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:105:y:2015:i:3:d:10.1007_s11192-015-1630-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.