IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v51y2017i1d10.1007_s11135-015-0290-1.html
   My bibliography  Save this article

A comparative simulation study of AR(1) estimators in short time series

Author

Listed:
  • Tanja Krone

    (Psychometrics and Statistics)

  • Casper J. Albers

    (Psychometrics and Statistics)

  • Marieke E. Timmerman

    (Psychometrics and Statistics)

Abstract

Various estimators of the autoregressive model exist. We compare their performance in estimating the autocorrelation in short time series. In Study 1, under correct model specification, we compare the frequentist r 1 estimator, C-statistic, ordinary least squares estimator (OLS) and maximum likelihood estimator (MLE), and a Bayesian method, considering flat (Bf) and symmetrized reference (Bsr) priors. In a completely crossed experimental design we vary lengths of time series (i.e., T = 10, 25, 40, 50 and 100) and autocorrelation (from −0.90 to 0.90 with steps of 0.10). The results show a lowest bias for the Bsr, and a lowest variability for r 1. The power in different conditions is highest for Bsr and OLS. For T = 10, the absolute performance of all measurements is poor, as expected. In Study 2, we study robustness of the methods through misspecification by generating the data according to an ARMA(1,1) model, but still analysing the data with an AR(1) model. We use the two methods with the lowest bias for this study, i.e., Bsr and MLE. The bias gets larger when the non-modelled moving average parameter becomes larger. Both the variability and power show dependency on the non-modelled parameter. The differences between the two estimation methods are negligible for all measurements.

Suggested Citation

  • Tanja Krone & Casper J. Albers & Marieke E. Timmerman, 2017. "A comparative simulation study of AR(1) estimators in short time series," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(1), pages 1-21, January.
  • Handle: RePEc:spr:qualqt:v:51:y:2017:i:1:d:10.1007_s11135-015-0290-1
    DOI: 10.1007/s11135-015-0290-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-015-0290-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-015-0290-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pantula, Sastry G. & Fuller, Wayne A., 1985. "Mean estimation bias in least squares estimation of autoregressive processes," Journal of Econometrics, Elsevier, vol. 27(1), pages 99-121, January.
    2. Tanaka, Katsuto & Maekawa, Koichi, 1984. "The sampling distributions of the predictor for an autoregressive model under misspecifications," Journal of Econometrics, Elsevier, vol. 25(3), pages 327-351, July.
    3. Jaume Arnau & Roser Bono, 2001. "Autocorrelation and Bias in Short Time Series: An Alternative Estimator," Quality & Quantity: International Journal of Methodology, Springer, vol. 35(4), pages 365-387, November.
    4. West, Kenneth D & Wilcox, David W, 1996. "A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 281-293, July.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    6. Berger, James O. & Yang, Ruo-Yong, 1994. "Noninformative Priors and Bayesian Testing for the AR(1) Model," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 461-482, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ginette Lafit & Kristof Meers & Eva Ceulemans, 2022. "A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 432-476, June.
    2. Massimiliano Giacalone & Demetrio Panarello & Raffaele Mattera, 2018. "Multicollinearity in regression: an efficiency comparison between Lp-norm and least squares estimators," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(4), pages 1831-1859, July.
    3. Holtemöller, Oliver & Kozyrev, Boris, 2023. "Forecasting Economic Activity with a Neural Network in Uncertain Times: Monte Carlo Evidence and Application to German GDP," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277688, Verein für Socialpolitik / German Economic Association.
    4. Sigrunn H. Sørbye & Pedro G. Nicolau & Håvard Rue, 2022. "Finite-sample properties of estimators for first and second order autoregressive processes," Statistical Inference for Stochastic Processes, Springer, vol. 25(3), pages 577-598, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    3. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    4. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    5. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    6. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    7. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    8. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    10. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    11. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    12. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    13. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    14. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    15. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    16. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    17. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    18. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).
    19. Blasques, Francisco & van Brummelen, Janneke & Gorgi, Paolo & Koopman, Siem Jan, 2024. "Maximum Likelihood Estimation for Non-Stationary Location Models with Mixture of Normal Distributions," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Pelagatti, Matteo & Maranzano, Paolo, 2021. "Assessing the effectiveness of the Italian risk-zones policy during the second wave of COVID-19," Health Policy, Elsevier, vol. 125(9), pages 1188-1199.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:51:y:2017:i:1:d:10.1007_s11135-015-0290-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.