IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v85y2022i1d10.1007_s00184-021-00822-5.html
   My bibliography  Save this article

On a stochastic order induced by an extension of Panjer’s family of discrete distributions

Author

Listed:
  • Aleksandr Beknazaryan

    (University of Twente)

  • Peter Adamic

    (Laurentian University)

Abstract

We factorize probability mass functions of discrete distributions belonging to Panjer’s family and to its certain extensions to define a stochastic order on the space of distributions supported on $${\mathbb {N}}_0$$ N 0 . Main properties of this order are presented. Comparison of some well-known distributions with respect to this order allows to generate new families of distributions that satisfy various recurrrence relations. The recursion formula for the probabilities of corresponding compound distributions for one such family is derived. Applications to various domains of reliability theory are provided.

Suggested Citation

  • Aleksandr Beknazaryan & Peter Adamic, 2022. "On a stochastic order induced by an extension of Panjer’s family of discrete distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 67-91, January.
  • Handle: RePEc:spr:metrik:v:85:y:2022:i:1:d:10.1007_s00184-021-00822-5
    DOI: 10.1007/s00184-021-00822-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00822-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00822-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willmot, Gordon, 1988. "Sundt and Jewell's Family of Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 18(1), pages 17-29, April.
    2. Kitano, Masashi & Shimizu, Kunio & Ong, S.H., 2005. "The generalized Charlier series distribution as a distribution with two-step recursion," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 280-290, December.
    3. Hesselager, Ole, 1994. "A Recursive Procedure for Calculation of some Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 24(1), pages 19-32, May.
    4. Willmot, G. E. & Panjer, H. H., 1987. "Difference equation approaches in evaluation of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 6(1), pages 43-56, January.
    5. Willmot, Gordon E., 1989. "Limiting tail behaviour of some discrete compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 8(3), pages 175-185, November.
    6. Sundt, Bjørn & Jewell, William S., 1981. "Further Results on Recursive Evaluation of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 27-39, June.
    7. Hess, Klaus Th. & Liewald, Anett & Schmidt, Klaus D., 2002. "An Extension of Panjer's Recursion," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 283-297, November.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Panjer, H. H. & Willmot, G. E., 1982. "Recursions for Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 13(1), pages 1-12, June.
    10. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vernic, Raluca, 2018. "On the evaluation of some multivariate compound distributions with Sarmanov’s counting distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 184-193.
    2. Sundt, Bjorn, 2002. "Recursive evaluation of aggregate claims distributions," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 297-322, June.
    3. Anh Ninh, 2021. "Robust newsvendor problems with compound Poisson demands," Annals of Operations Research, Springer, vol. 302(1), pages 327-338, July.
    4. Cordelia Rudolph & Uwe Schmock, 2020. "Multivariate Collective Risk Model: Dependent Claim Numbers and Panjer’s Recursion," Risks, MDPI, vol. 8(2), pages 1-31, May.
    5. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    6. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    7. Ambagaspitiya, R. S., 1995. "A family of discrete distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 107-127, May.
    8. Brendan P. M. McCabe & Christopher L. Skeels, 2020. "Distributions You Can Count On …But What’s the Point?," Econometrics, MDPI, vol. 8(1), pages 1-36, March.
    9. Alexandre Kurth & Dirk Tasche, 2002. "Credit Risk Contributions to Value-at-Risk and Expected Shortfall," Papers cond-mat/0207750, arXiv.org, revised Nov 2002.
    10. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, June.
    11. Marios N. Kyriacou, 2015. "Credit Risk Measurement in Financial Institutions: Going Beyond Regulatory Compliance," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 9(1), pages 31-72, June.
    12. Paul Embrechts & Marco Frei, 2009. "Panjer recursion versus FFT for compound distributions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 497-508, July.
    13. Janecskó, Balázs, 2002. "Portfóliószemléletű hitelkockázat szimulációs meghatározása [Simulated determination of credit risk in portfolio terms]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 664-676.
    14. Frank Schlottmann & Detlef Seese, 2002. "Hybrid multi-objective evolutionary computation of constrained downside risk-return efficient sets for credit portfolios," Computing in Economics and Finance 2002 78, Society for Computational Economics.
    15. Hesselager, Ole, 1995. "Order relations for some distributions," Insurance: Mathematics and Economics, Elsevier, vol. 16(2), pages 129-134, May.
    16. Finner, H. & Kern, P. & Scheer, M., 2015. "On some compound distributions with Borel summands," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 234-244.
    17. den Iseger, P. W. & Smith, M. A. J. & Dekker, R., 1997. "Computing compound distributions faster!," Insurance: Mathematics and Economics, Elsevier, vol. 20(1), pages 23-34, June.
    18. Gareth W. Peters & Pavel V. Shevchenko & Mario V. Wuthrich, 2009. "Dynamic operational risk: modeling dependence and combining different sources of information," Papers 0904.4074, arXiv.org, revised Jul 2009.
    19. Sundt, Bjorn, 2003. "Some recursions for moments of compound distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 487-496, December.
    20. Kitano, Masashi & Shimizu, Kunio & Ong, S.H., 2005. "The generalized Charlier series distribution as a distribution with two-step recursion," Statistics & Probability Letters, Elsevier, vol. 75(4), pages 280-290, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:85:y:2022:i:1:d:10.1007_s00184-021-00822-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.