IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v92y1997i1d10.1023_a1022696215389.html
   My bibliography  Save this article

Optimal Production Planning in a Stochastic Manufacturing System with Long-Run Average Cost

Author

Listed:
  • S. P. Sethi

    (University of Toronto)

  • W. Suo

    (University of Toronto)

  • M. I. Taksar

    (SUNY at Stony Brook)

  • Q. Zhang

    (University of Georgia)

Abstract

This paper is concerned with the optimal production planning in a dynamic stochastic manufacturing system consisting of a single machine that is failure prone and facing a constant demand. The objective is to choose the rate of production over time in order to minimize the long-run average cost of production and surplus. The analysis proceeds with a study of the corresponding problem with a discounted cost. It is shown using the vanishing discount approach that the Hamilton–Jacobi–Bellman equation for the average cost problem has a solution giving rise to the minimal average cost and the so-called potential function. The result helps in establishing a verification theorem. Finally, the optimal control policy is specified in terms of the potential function.

Suggested Citation

  • S. P. Sethi & W. Suo & M. I. Taksar & Q. Zhang, 1997. "Optimal Production Planning in a Stochastic Manufacturing System with Long-Run Average Cost," Journal of Optimization Theory and Applications, Springer, vol. 92(1), pages 161-188, January.
  • Handle: RePEc:spr:joptap:v:92:y:1997:i:1:d:10.1023_a:1022696215389
    DOI: 10.1023/A:1022696215389
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1022696215389
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1022696215389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Bielecki & P. R. Kumar, 1988. "Optimality of Zero-Inventory Policies for Unreliable Manufacturing Systems," Operations Research, INFORMS, vol. 36(4), pages 532-541, August.
    2. S. Sethi & H. M. Soner & Q. Zhang & H. Jiang, 1992. "Turnpike Sets and Their Analysis in Stochastic Production Planning Problems," Mathematics of Operations Research, INFORMS, vol. 17(4), pages 932-950, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Beyer & S. P. Sethi, 1997. "Average Cost Optimality in Inventory Models with Markovian Demands," Journal of Optimization Theory and Applications, Springer, vol. 92(3), pages 497-526, March.
    2. Barış Tan, 2019. "Production Control with Price, Cost, and Demand Uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1057-1085, December.
    3. Amir Ahmadi-Javid & Roland Malhamé, 2015. "Optimal Control of a Multistate Failure-Prone Manufacturing System under a Conditional Value-at-Risk Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 716-732, November.
    4. S. P. Sethi & H. Yan & H. Zhang & Q. Zhang, 2002. "Optimal and Hierarchical Controls in Dynamic Stochastic Manufacturing Systems: A Survey," Manufacturing & Service Operations Management, INFORMS, vol. 4(2), pages 133-170.
    5. Amir Ahmadi-Javid & Mohsen Ebadi, 2021. "Economic design of memory-type control charts: The fallacy of the formula proposed by Lorenzen and Vance (1986)," Computational Statistics, Springer, vol. 36(1), pages 661-690, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owen Q. Wu & Hong Chen, 2010. "Optimal Control and Equilibrium Behavior of Production-Inventory Systems," Management Science, INFORMS, vol. 56(8), pages 1362-1379, August.
    2. S. P. Sethi & H. Yan & H. Zhang & Q. Zhang, 2002. "Optimal and Hierarchical Controls in Dynamic Stochastic Manufacturing Systems: A Survey," Manufacturing & Service Operations Management, INFORMS, vol. 4(2), pages 133-170.
    3. Xiang Li, 2017. "Optimal procurement strategies from suppliers with random yield and all-or-nothing risks," Annals of Operations Research, Springer, vol. 257(1), pages 167-181, October.
    4. B. Khoury, 2009. "A discrete approach to designing optimal hedging-point control policies for production-inventory systems with general stochastic behavior," Computational Management Science, Springer, vol. 6(4), pages 399-409, October.
    5. Barış Tan, 2019. "Production Control with Price, Cost, and Demand Uncertainty," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 1057-1085, December.
    6. B C Giri & T Dohi, 2005. "Exact formulation of stochastic EMQ model for an unreliable production system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 563-575, May.
    7. Jingfu Huang & Gaoke Wu & Yiju Wang, 2021. "Retailer’s Emergency Ordering Policy When Facing an Impending Supply Disruption," Sustainability, MDPI, vol. 13(13), pages 1-21, June.
    8. Gharbi, A. & Pellerin, R. & Sadr, J., 2008. "Production rate control for stochastic remanufacturing systems," International Journal of Production Economics, Elsevier, vol. 112(1), pages 37-47, March.
    9. Taleizadeh, Ata Allah & Cárdenas-Barrón, Leopoldo Eduardo & Mohammadi, Babak, 2014. "A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process," International Journal of Production Economics, Elsevier, vol. 150(C), pages 9-27.
    10. Süleyman Demirel & Roman Kapuscinski & Man Yu, 2018. "Strategic Behavior of Suppliers in the Face of Production Disruptions," Management Science, INFORMS, vol. 64(2), pages 533-551, February.
    11. Francis De Vericourt & Fikri Karaesmen & Yves Dallery, 2000. "Dynamic Scheduling in a Make-to-Stock System: A Partial Characterization of Optimal Policies," Operations Research, INFORMS, vol. 48(5), pages 811-819, October.
    12. Om Prakash & A.R. Roy & A. Goswami, 2014. "Stochastic manufacturing system with process deterioration and machine breakdown," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 2539-2551, December.
    13. Chan, Felix T.S. & Wang, Zheng & Zhang, Jie, 2007. "A two-level hedging point policy for controlling a manufacturing system with time-delay, demand uncertainty and extra capacity," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1528-1558, February.
    14. Haurie, A., 1995. "Time scale decomposition in production planning for unreliable flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 82(2), pages 339-358, April.
    15. G. Yin & Q. Zhang & H. M. Yan & E. K. Boukas, 2001. "Random-Direction Optimization Algorithms with Applications to Threshold Controls," Journal of Optimization Theory and Applications, Springer, vol. 110(1), pages 211-233, July.
    16. Peymankar, Mahboobe & Dehghanian, Farzad & Ghiami, Yousef & Abolbashari, Mohammad Hassan, 2018. "The effects of contractual agreements on the economic production quantity model with machine breakdown," International Journal of Production Economics, Elsevier, vol. 201(C), pages 203-215.
    17. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2013. "Joint optimal lot sizing and production control policy in an unreliable and imperfect manufacturing system," International Journal of Production Economics, Elsevier, vol. 144(1), pages 143-156.
    18. Yuan-Shyi Peter Chiu & Chih-An Katherine Lin & Huei-Hsin Chang & Victoria Chiu, 2010. "Mathematical modelling for determining economic batch size and optimal number of deliveries for EPQ model with quality assurance," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 16(4), pages 373-388, July.
    19. Giri, B. C. & Yun, W. Y. & Dohi, T., 2005. "Optimal design of unreliable production-inventory systems with variable production rate," European Journal of Operational Research, Elsevier, vol. 162(2), pages 372-386, April.
    20. Houmin Yan & Xun Yu Zhou & G. Yin, 1999. "Approximating an Optimal Production Policy in a Continuous Flow Line: Recurrence and Asymptotic Properties," Operations Research, INFORMS, vol. 47(4), pages 535-549, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:92:y:1997:i:1:d:10.1023_a:1022696215389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.