IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i2d10.1007_s10957-024-02408-3.html
   My bibliography  Save this article

Nonsmooth Nonconvex Stochastic Heavy Ball

Author

Listed:
  • Tam Le

    (University of Toulouse)

Abstract

Motivated by the conspicuous use of momentum-based algorithms in deep learning, we study a nonsmooth nonconvex stochastic heavy ball method and show its convergence. Our approach builds upon semialgebraic (definable) assumptions commonly met in practical situations and combines a nonsmooth calculus with a differential inclusion method. Additionally, we provide general conditions for the sample distribution to ensure the convergence of the objective function. Our results are general enough to justify the use of subgradient sampling in modern implementations that heuristically apply rules of differential calculus on nonsmooth functions, such as backpropagation or implicit differentiation. As for the stochastic subgradient method, our analysis highlights that subgradient sampling can make the stochastic heavy ball method converge to artificial critical points. Thanks to the semialgebraic setting, we address this concern showing that these artifacts are almost surely avoided when initializations are randomized, leading the method to converge to Clarke critical points.

Suggested Citation

  • Tam Le, 2024. "Nonsmooth Nonconvex Stochastic Heavy Ball," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 699-719, May.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02408-3
    DOI: 10.1007/s10957-024-02408-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02408-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02408-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02408-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.