IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i1d10.1007_s10878-022-00960-0.html
   My bibliography  Save this article

RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality

Author

Listed:
  • Faxu Li

    (Qinghai Normal University)

  • Hui Xu

    (Qinghai Normal University)

  • Liang Wei

    (Qinghai Normal University)

  • Defang Wang

    (Qinghai Normal University)

Abstract

Identifying vital nodes in hypernetworks is of great significance for understanding the connectivity property and dynamic characteristic of the hypernetwork. A number of methods have been proposed to identify vital nodes of hypernetworks, ranging from centralities of nodes to diffusion-based processes, but most of them ignore the impacts of neighbors. Many researchers use degree, hyper-degree or the clustering coefficient to identify vital nodes. However, the degree can only take into account the neighbor size, the hyper-degree can only consider the incidence hyperedge size, regardless of the clustering property of the neighbors. The clustering coefficient could only reflect the density of connections among the neighbors and neglect the activity of the target node. In this paper, we present a novel local centrality to identify vital nodes by combining the influence of the node itself and neighbor as well as clustering coefficient information. To evaluate the performance of the proposed method, the robustness results measured by the hypernetwork efficiency through removing the vital nodes for protein complex hypernetwork show that the new method can more effective in identify vital nodes.

Suggested Citation

  • Faxu Li & Hui Xu & Liang Wei & Defang Wang, 2023. "RETRACTED ARTICLE: Identifying vital nodes in hypernetwork based on local centrality," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-13, January.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00960-0
    DOI: 10.1007/s10878-022-00960-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00960-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00960-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefania Vitali & James B Glattfelder & Stefano Battiston, 2011. "The Network of Global Corporate Control," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
    2. Liu, Jia-Bao & Pan, Xiang-Feng, 2016. "Minimizing Kirchhoff index among graphs with a given vertex bipartiteness," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 84-88.
    3. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    4. Yong Yang & Kai-Jun Xu & Chen Hong, 2021. "Network dynamics on the Chinese air transportation multilayer network," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 32(05), pages 1-14, May.
    5. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    6. Estrada, Ernesto & Rodríguez-Velázquez, Juan A., 2006. "Subgraph centrality and clustering in complex hyper-networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 581-594.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    2. Yu, Senbin & Gao, Liang & Xu, Lida & Gao, Zi-You, 2019. "Identifying influential spreaders based on indirect spreading in neighborhood," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 418-425.
    3. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    4. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    5. Wang, Juan & Li, Chao & Xia, Chengyi, 2018. "Improved centrality indicators to characterize the nodal spreading capability in complex networks," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 388-400.
    6. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    7. Chen, Gaolin & Zhou, Shuming & Li, Min & Zhang, Hong, 2022. "Evaluation of community vulnerability based on communicability and structural dissimilarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    8. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Sheikhahmadi, Amir & Nematbakhsh, Mohammad Ali & Zareie, Ahmad, 2017. "Identification of influential users by neighbors in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 517-534.
    11. Bao, Zhong-Kui & Ma, Chuang & Xiang, Bing-Bing & Zhang, Hai-Feng, 2017. "Identification of influential nodes in complex networks: Method from spreading probability viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 391-397.
    12. Xu, Guiqiong & Meng, Lei, 2023. "A novel algorithm for identifying influential nodes in complex networks based on local propagation probability model," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Wang, Junyi & Hou, Xiaoni & Li, Kezan & Ding, Yong, 2017. "A novel weight neighborhood centrality algorithm for identifying influential spreaders in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 88-105.
    14. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    15. Yeruva, Sujatha & Devi, T. & Reddy, Y. Samtha, 2016. "Selection of influential spreaders in complex networks using Pareto Shell decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 133-144.
    16. Yang, Yang & Sun, Peng Gang & Hu, Xia & Li, Zhou Jun, 2014. "Closed walks for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 129-143.
    17. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    18. Ibnoulouafi, Ahmed & El Haziti, Mohamed, 2018. "Density centrality: identifying influential nodes based on area density formula," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 69-80.
    19. Ma, Ling-ling & Ma, Chuang & Zhang, Hai-Feng & Wang, Bing-Hong, 2016. "Identifying influential spreaders in complex networks based on gravity formula," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 205-212.
    20. Liu, Yang & Wei, Bo & Du, Yuxian & Xiao, Fuyuan & Deng, Yong, 2016. "Identifying influential spreaders by weight degree centrality in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 1-7.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00960-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.