IDEAS home Printed from https://ideas.repec.org/a/spr/eujhec/v11y2010i1p15-25.html
   My bibliography  Save this article

Cost-effectiveness of immunosuppressive regimens in renal transplant recipients in Germany: a model approach

Author

Listed:
  • Jan Jürgensen
  • Wolfgang Arns
  • Bastian Haß

Abstract

No abstract is available for this item.

Suggested Citation

  • Jan Jürgensen & Wolfgang Arns & Bastian Haß, 2010. "Cost-effectiveness of immunosuppressive regimens in renal transplant recipients in Germany: a model approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 11(1), pages 15-25, February.
  • Handle: RePEc:spr:eujhec:v:11:y:2010:i:1:p:15-25
    DOI: 10.1007/s10198-009-0148-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10198-009-0148-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10198-009-0148-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Werner Kleophas & Helmut Reichel, 2007. "International study of health care organization and financing: development of renal replacement therapy in Germany," International Journal of Health Economics and Management, Springer, vol. 7(2), pages 185-200, September.
    2. Frank A. Sonnenberg & J. Robert Beck, 1993. "Markov Models in Medical Decision Making," Medical Decision Making, , vol. 13(4), pages 322-338, December.
    3. Wolfgang C. Winkelmayer & Milton C. Weinstein & Murray A. Mittleman & Robert J. Glynn & Joseph S. Pliskin, 2002. "Health Economic Evaluations: The Special Case of End-Stage Renal Disease Treatment," Medical Decision Making, , vol. 22(5), pages 417-430, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiuxian Wang & Na Geng & Jianxin Qiu & Zhibin Jiang & Liping Zhou, 2020. "Markov model and meta-heuristics combined method for cost-effectiveness analysis," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 213-235, March.
    2. Jan Jürgensen & Robert Ikenberg & Roger-Axel Greiner & Volker Hösel, 2015. "Cost-effectiveness of modern mTOR inhibitor based immunosuppression compared to the standard of care after renal transplantation in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(4), pages 377-390, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kontodimopoulos, Nick & Niakas, Dimitris, 2008. "An estimate of lifelong costs and QALYs in renal replacement therapy based on patients' life expectancy," Health Policy, Elsevier, vol. 86(1), pages 85-96, April.
    2. Malek B Hannouf & Chander Sehgal & Jeffrey Q Cao & Joseph D Mocanu & Eric Winquist & Gregory S Zaric, 2012. "Cost-Effectiveness of Adding Cetuximab to Platinum-Based Chemotherapy for First-Line Treatment of Recurrent or Metastatic Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    3. Bärnighausen, Till & Bloom, David E., 2009. ""Conditional scholarships" for HIV/AIDS health workers: Educating and retaining the workforce to provide antiretroviral treatment in sub-Saharan Africa," Social Science & Medicine, Elsevier, vol. 68(3), pages 544-551, February.
    4. de Wit, G.Ardine & Ramsteijn, Paul G & de Charro, Frank Th, 1998. "Economic evaluation of end stage renal disease treatment," Health Policy, Elsevier, vol. 44(3), pages 215-232, June.
    5. Afschin Gandjour & Eva-Julia Weyler, 2006. "Cost-effectiveness of referrals to high-volume hospitals: An analysis based on a probabilistic Markov model for hip fracture surgeries," Health Care Management Science, Springer, vol. 9(4), pages 359-369, November.
    6. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    7. Mark Sculpher & David Torgerson & Ron Goeree & Bernie O'Brien, 1999. "A critical structured review of economic evaluations of interventions for the prevention and treatment of osteoporosis," Working Papers 169chedp, Centre for Health Economics, University of York.
    8. F. Tomini & F. Prinzen & A. D. I. Asselt, 2016. "A review of economic evaluation models for cardiac resynchronization therapy with implantable cardioverter defibrillators in patients with heart failure," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 17(9), pages 1159-1172, December.
    9. Chisholm, Orin & Sharry, Patrick & Phillips, Lawrence, 2022. "Multi-criteria decision analysis for benefit-risk analysis by national regulatory authorities," LSE Research Online Documents on Economics 114407, London School of Economics and Political Science, LSE Library.
    10. Franck Maunoury & Aurore Clément & Chizoba Nwankwo & Laurie Levy-Bachelot & Armand Abergel & Vincent Di Martino & Eric Thervet & Isabelle Durand-Zaleski, 2018. "Cost-effectiveness analysis of elbasvir-grazoprevir regimen for treating hepatitis C virus genotype 1 infection in stage 4-5 chronic kidney disease patients in France," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-20, March.
    11. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.
    12. K Cooper & S C Brailsford & R Davies, 2007. "Choice of modelling technique for evaluating health care interventions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 168-176, February.
    13. F. R. Rolli & M. Ruggeri & F. Kheiraoui & C. Drago & M. Basile & C. Favaretti & A. Cicchetti, 2018. "Economic evaluation of Zepatier for the management of HCV in the Italian scenario," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1365-1374, December.
    14. Nicholas Graves & Mary Courtney & Helen Edwards & Anne Chang & Anthony Parker & Kathleen Finlayson, 2009. "Cost-Effectiveness of an Intervention to Reduce Emergency Re-Admissions to Hospital among Older Patients," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-9, October.
    15. Douglas K. Owens, 2002. "Analytic Tools for Public Health Decision Making," Medical Decision Making, , vol. 22(1_suppl), pages 3-10, September.
    16. Jun Li & Benjamin H K Yip & Chichiu Leung & Wankyo Chung & Kin On Kwok & Emily Y Y Chan & Engkiong Yeoh & Puihong Chung, 2018. "Screening for latent and active tuberculosis infection in the elderly at admission to residential care homes: A cost-effectiveness analysis in an intermediate disease burden area," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-18, January.
    17. Andrea C Villanti & Yiding Jiang & David B Abrams & Bruce S Pyenson, 2013. "A Cost-Utility Analysis of Lung Cancer Screening and the Additional Benefits of Incorporating Smoking Cessation Interventions," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    18. Bruce A. Craig & Peter P. Sendi, 2002. "Estimation of the transition matrix of a discrete‐time Markov chain," Health Economics, John Wiley & Sons, Ltd., vol. 11(1), pages 33-42, January.
    19. B. Brüggenjürgen & P. Lindgren & B. Ehlken & H.-J. Rupprecht & S. Willich, 2007. "Long-term cost-effectiveness of clopidogrel in patients with acute coronary syndrome without ST-segment elevation in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 8(1), pages 51-57, March.
    20. Turgay Ayer, 2015. "Inverse optimization for assessing emerging technologies in breast cancer screening," Annals of Operations Research, Springer, vol. 230(1), pages 57-85, July.

    More about this item

    Keywords

    Cost-effectiveness; Markov model; Immunosuppression; Sirolimus; Renal transplant; D8; H51; I19;
    All these keywords.

    JEL classification:

    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • H51 - Public Economics - - National Government Expenditures and Related Policies - - - Government Expenditures and Health
    • I19 - Health, Education, and Welfare - - Health - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eujhec:v:11:y:2010:i:1:p:15-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.