IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i5d10.1007_s10668-023-03993-5.html
   My bibliography  Save this article

Study on feasibility of rainwater harvesting using MAR model in drought-prone Barind Tract, Bangladesh

Author

Listed:
  • Md. Arif Hossain

    (University of Rajshahi)

  • Chowdhury Sarwar Jahan

    (University of Rajshahi)

  • Rakib Howlader

    (University of Rajshahi)

  • Quamrul Hasan Mazumder

    (University of Rajshahi)

  • Md. Ferozur Rahaman

    (University of Rajshahi)

Abstract

Bangladesh heavily relies on groundwater resource for all major uses and ranks sixth in the global league of large groundwater extracting countries. Its northwest part—the drought-prone Barind Tract faces challenges in rainfall scarcity and drought; constrain for runoff water conservation due to improper management; low infiltration capacity of thick top surface clay soil layer (Barind clay) to recharge aquifer insufficiently; loss of major portion of runoff water runs toward canals (Kharies), surrounding rivers, etc., immediately after rainfall; less potentiality of groundwater resource development results its depletion due to over-exploitation for domestic and agriculture sectors and eventually discharged into surrounding canals, rivers, etc., in both the dry and monsoon seasons. At the same time, unsustainable water management practice consequences are a rapid declination of groundwater level since the last few decades, the system leads to unbalance condition. Unfortunately, no such study for sustainable water source management has yet been conducted for the area. In this context, rainwater harvesting through artificial recharge of groundwater using managed aquifer recharge (MAR) has been considered as a viable solution to revert the ongoing depletion of this resource and to restore the water balance scenario as a terrific and challenging task. Here, the potentiality of MAR has been considered as an integrated approach of remote sensing and geographical information system using multi-criteria decision-making technique as time-consuming and cost-effective efforts. The potentiality of MAR application covers an area of 448 km2 (20%) as ‘highly suitable’; that of 1456 km2 (66%) as ‘moderately suitable’; and that of 312 km2 (14%) as ‘unsuitable.’ Here, 35% of rainfall is lost as runoff and the remaining 14% as soil moisture. Again, groundwater resource used for irrigation equals 24% of the annual rainfall, whereas that of only 8.5% infiltrates to recharge aquifer naturally, and the rest 68% of runoff water has a scope to injection artificially to revert balanced condition. Using MAR, the cost of recharge per cubic meter of water is about US$ 0.18. Although this is little bit expensive, it can be a valuable gift for economically marginalized and unprivileged Barind communities facing hardship for drinking and agricultural water. Finally, the present study provides a guideline to water resource managers and decision makers to ascertain availability of water resource as lauded in the Bangladesh Water Act (BWA) (2013).

Suggested Citation

  • Md. Arif Hossain & Chowdhury Sarwar Jahan & Rakib Howlader & Quamrul Hasan Mazumder & Md. Ferozur Rahaman, 2024. "Study on feasibility of rainwater harvesting using MAR model in drought-prone Barind Tract, Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(5), pages 12737-12761, May.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03993-5
    DOI: 10.1007/s10668-023-03993-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03993-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03993-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:5:d:10.1007_s10668-023-03993-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.