IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v53y2017i1d10.1007_s00181-017-1253-2.html
   My bibliography  Save this article

Forecast combination when outcomes are difficult to predict

Author

Listed:
  • Graham Elliott

    (University of California, San Diego)

Abstract

We show that when outcomes are difficult to forecast in the sense that forecast errors have a large common component that (a) optimal weights are not affected by this common component, and may well be far from equal to each other but (b) the relative mean square error loss from averaging over optimal combination can be small. Hence, researchers could well estimate combining weights that indicate that correlations could be exploited for better forecasts only to find that the difference in terms of loss is negligible. The results then provide an additional explanation for the commonly encountered practical situation of the averaging of forecasts being difficult to improve upon.

Suggested Citation

  • Graham Elliott, 2017. "Forecast combination when outcomes are difficult to predict," Empirical Economics, Springer, vol. 53(1), pages 7-20, August.
  • Handle: RePEc:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-017-1253-2
    DOI: 10.1007/s00181-017-1253-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-017-1253-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-017-1253-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palm, F. & Zellner, A., 1991. "To combine or not to combine? issues of combining forecasts," LIDAM Discussion Papers CORE 1991022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    3. Ito, Takatoshi, 1990. "Foreign Exchange Rate Expectations: Micro Survey Data," American Economic Review, American Economic Association, vol. 80(3), pages 434-449, June.
    4. Lahiri Kajal & Yang Liu, 2016. "A non-linear forecast combination procedure for binary outcomes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 421-440, September.
    5. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    6. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    9. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    10. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    11. Kajal Lahiri & Huaming Peng & Yongchen Zhao, 2013. "Machine Learning and Forecast Combination in Incomplete Panels," Discussion Papers 13-01, University at Albany, SUNY, Department of Economics.
    12. Jason Dana & Robyn M. Dawes, 2004. "The Superiority of Simple Alternatives to Regression for Social Science Predictions," Journal of Educational and Behavioral Statistics, , vol. 29(3), pages 317-331, September.
    13. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
    2. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    3. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    4. Marcus P. A. Cobb, 2020. "Aggregate density forecasting from disaggregate components using Bayesian VARs," Empirical Economics, Springer, vol. 58(1), pages 287-312, January.
    5. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kajal Lahiri & Huaming Peng & Xuguang Simon Sheng, 2022. "Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 29-50, Emerald Group Publishing Limited.
    2. Constantin Bürgi & Tara M. Sinclair, 2017. "A nonparametric approach to identifying a subset of forecasters that outperforms the simple average," Empirical Economics, Springer, vol. 53(1), pages 101-115, August.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    5. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    6. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
    7. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    10. Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
    11. Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
    12. Christopher G. Gibbs & Andrey L. Vasnev, 2017. "Conditionally Optimal Weights and Forward-Looking Approaches to Combining Forecasts," Discussion Papers 2017-10, School of Economics, The University of New South Wales.
    13. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    14. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    15. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    16. Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
    17. Wagner Piazza Gaglianone & João Victor Issler & Silvia Maria Matos, 2017. "Applying a microfounded-forecasting approach to predict Brazilian inflation," Empirical Economics, Springer, vol. 53(1), pages 137-163, August.
    18. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    19. Christopher G. Gibbs, 2015. "Overcoming the Forecast Combination Puzzle: Lessons from the Time-Varying Effciency of Phillips Curve Forecasts of U.S. Inflation," Discussion Papers 2015-09, School of Economics, The University of New South Wales.
    20. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.

    More about this item

    Keywords

    Forecasting; Forecast combination; Average forecasts;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-017-1253-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.