IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i1d10.1007_s10589-023-00453-8.html
   My bibliography  Save this article

An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function

Author

Listed:
  • Ying Gao

    (University of Electronic Science and Technology of China)

  • Wenxing Zhang

    (University of Electronic Science and Technology of China)

Abstract

Primal-dual hybrid gradient (PDHG) method is a canonical and popular prototype for solving saddle point problem (SPP). However, the nonlinear coupling term in SPP excludes the application of PDHG on far-reaching real-world problems. In this paper, following the seminal work by Valkonen (Inverse Problems 30, 2014), we devise a variant iterative scheme for solving SPP with nonlinear function by exerting an alternative extrapolation procedure. The novel iterative scheme falls exactly into the proximal point algorithmic framework without any residuals, which indicates that the associated inclusion problem is “nearer” to the KKT mapping induced by SPP. Under the metrically regular assumption on KKT mapping, we simplify the local convergence of the proposed method on contractive perspective. Numerical simulations on a PDE-constrained nonlinear inverse problem demonstrate the compelling performance of the proposed method.

Suggested Citation

  • Ying Gao & Wenxing Zhang, 2023. "An alternative extrapolation scheme of PDHGM for saddle point problem with nonlinear function," Computational Optimization and Applications, Springer, vol. 85(1), pages 263-291, May.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00453-8
    DOI: 10.1007/s10589-023-00453-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00453-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00453-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingsheng He & Xiaoming Yuan & Wenxing Zhang, 2013. "A customized proximal point algorithm for convex minimization with linear constraints," Computational Optimization and Applications, Springer, vol. 56(3), pages 559-572, December.
    2. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    3. Xingju Cai & Deren Han & Lingling Xu, 2013. "An improved first-order primal-dual algorithm with a new correction step," Journal of Global Optimization, Springer, vol. 57(4), pages 1419-1428, December.
    4. Guoyong Gu & Bingsheng He & Xiaoming Yuan, 2014. "Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 135-161, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongjin He & Jitamitra Desai & Kai Wang, 2016. "A primal–dual prediction–correction algorithm for saddle point optimization," Journal of Global Optimization, Springer, vol. 66(3), pages 573-583, November.
    2. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    3. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    4. Yanqin Bai & Xiao Han & Tong Chen & Hua Yu, 2015. "Quadratic kernel-free least squares support vector machine for target diseases classification," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 850-870, November.
    5. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    6. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    7. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    8. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    9. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    10. Adil Salim & Laurent Condat & Konstantin Mishchenko & Peter Richtárik, 2022. "Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 102-130, October.
    11. Eike Börgens & Christian Kanzow, 2019. "Regularized Jacobi-type ADMM-methods for a class of separable convex optimization problems in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 73(3), pages 755-790, July.
    12. Fan Jiang & Zhiyuan Zhang & Hongjin He, 2023. "Solving saddle point problems: a landscape of primal-dual algorithm with larger stepsizes," Journal of Global Optimization, Springer, vol. 85(4), pages 821-846, April.
    13. Luis Briceño-Arias & Fernando Roldán, 2023. "Primal-dual splittings as fixed point iterations in the range of linear operators," Journal of Global Optimization, Springer, vol. 85(4), pages 847-866, April.
    14. Eisuke Yamagata & Shunsuke Ono, 2023. "Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via $\ell_0$-Constrained Portfolio," Papers 2309.10152, arXiv.org, revised Mar 2024.
    15. Yu, Yongchao & Peng, Jigen, 2018. "A modified primal-dual method with applications to some sparse recovery problems," Applied Mathematics and Computation, Elsevier, vol. 333(C), pages 76-94.
    16. Jianlin Jiang & Liyun Ling & Yan Gu & Su Zhang & Yibing Lv, 2023. "Customized Alternating Direction Methods of Multipliers for Generalized Multi-facility Weber Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 362-389, January.
    17. S. Bonettini & M. Prato & S. Rebegoldi, 2023. "A nested primal–dual FISTA-like scheme for composite convex optimization problems," Computational Optimization and Applications, Springer, vol. 84(1), pages 85-123, January.
    18. Wenli Huang & Yuchao Tang & Meng Wen & Haiyang Li, 2022. "Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    19. Luis Briceño-Arias & Julio Deride & Cristian Vega, 2022. "Random Activations in Primal-Dual Splittings for Monotone Inclusions with a Priori Information," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 56-81, January.
    20. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00453-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.