IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v22y2007i4p543-553.html
   My bibliography  Save this article

On extracting information implied in options

Author

Listed:
  • M. Benko
  • M. Fengler
  • W. Härdle
  • M. Kopa

Abstract

No abstract is available for this item.

Suggested Citation

  • M. Benko & M. Fengler & W. Härdle & M. Kopa, 2007. "On extracting information implied in options," Computational Statistics, Springer, vol. 22(4), pages 543-553, December.
  • Handle: RePEc:spr:compst:v:22:y:2007:i:4:p:543-553
    DOI: 10.1007/s00180-007-0061-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-007-0061-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-007-0061-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    2. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    3. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Tegn'er & Stephen Roberts, 2019. "A Probabilistic Approach to Nonparametric Local Volatility," Papers 1901.06021, arXiv.org, revised Jan 2019.
    2. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    3. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    4. Matthias Fengler, 2010. "Option data and modeling BSM implied volatility," University of St. Gallen Department of Economics working paper series 2010 2010-32, Department of Economics, University of St. Gallen.
    5. Miloš Kopa & Sebastiano Vitali & Tomáš Tichý & Radek Hendrych, 2017. "Implied volatility and state price density estimation: arbitrage analysis," Computational Management Science, Springer, vol. 14(4), pages 559-583, October.
    6. Maciak, Matúš, 2021. "Quantile LASSO with changepoints in panel data models applied to option pricing," Econometrics and Statistics, Elsevier, vol. 20(C), pages 166-175.
    7. Fengler, Matthias R. & Hin, Lin-Yee, 2015. "Semi-nonparametric estimation of the call-option price surface under strike and time-to-expiry no-arbitrage constraints," Journal of Econometrics, Elsevier, vol. 184(2), pages 242-261.
    8. Kim, Namhyoung & Lee, Jaewook, 2013. "No-arbitrage implied volatility functions: Empirical evidence from KOSPI 200 index options," Journal of Empirical Finance, Elsevier, vol. 21(C), pages 36-53.
    9. Dietmar P. J. Leisen, 2017. "The shape of small sample biases in pricing kernel estimations," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 943-958, June.
    10. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    11. Judith Glaser & Pascal Heider, 2012. "Arbitrage-free approximation of call price surfaces and input data risk," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 61-73, August.
    12. David Volkmann, 2021. "Explaining S&P500 option returns: an implied risk-adjusted approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 665-685, June.
    13. Zdeněk Drábek & Miloš Kopa & Matúš Maciak & Michal Pešta & Sebastiano Vitali, 2023. "Investment disputes and their explicit role in option market uncertainty and overall risk instability," Computational Management Science, Springer, vol. 20(1), pages 1-25, December.
    14. Tahar Ferhati, 2020. "Robust Calibration For SVI Model Arbitrage Free," Working Papers hal-02490029, HAL.
    15. Tahar Ferhati, 2020. "SVI Model Free Wings," Working Papers hal-02517572, HAL.
    16. Sebastiano Vitali & Miloš Kopa & Gabriele Giana, 2023. "Implied volatility smoothing at COVID-19 times," Computational Management Science, Springer, vol. 20(1), pages 1-42, December.
    17. Maciak, Matúš, 2021. "Quantile LASSO in arbitrage-free option markets," Econometrics and Statistics, Elsevier, vol. 18(C), pages 106-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enzo Giacomini & Wolfgang Härdle & Volker Krätschmer, 2009. "Dynamic semiparametric factor models in risk neutral density estimation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 93(4), pages 387-402, December.
    2. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    3. Wolfgang Karl Härdle & Elena Silyakova, 2012. "Implied Basket Correlation Dynamics," SFB 649 Discussion Papers SFB649DP2012-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Wallmeier, Martin, 2012. "Smile in Motion: An Intraday Analysis of Asymmetric Implied Volatility," FSES Working Papers 427, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    5. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    6. Park, Byeong U. & Mammen, Enno & Härdle, Wolfgang & Borak, Szymon, 2009. "Time Series Modelling With Semiparametric Factor Dynamics," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 284-298.
    7. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    8. René Carmona & Sergey Nadtochiy, 2009. "Local volatility dynamic models," Finance and Stochastics, Springer, vol. 13(1), pages 1-48, January.
    9. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    10. Reus, Lorenzo & Carrasco, José A. & Pincheira, Pablo, 2020. "Do it with a smile: Forecasting volatility with currency options," Finance Research Letters, Elsevier, vol. 34(C).
    11. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    12. Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
    13. Hans Buehler, 2006. "Consistent Variance Curve Models," Finance and Stochastics, Springer, vol. 10(2), pages 178-203, April.
    14. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    15. Chen, Ren-Raw & Hsieh, Pei-lin & Huang, Jeffrey, 2018. "Crash risk and risk neutral densities," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 162-189.
    16. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2010. "High Dimensional Nonstationary Time Series Modelling with Generalized Dynamic Semiparametric Factor Model," SFB 649 Discussion Papers SFB649DP2010-039, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    17. Gianluca Vagnani, 2009. "The Black-Scholes model as a determinant of the implied volatility smile: A simulation study," Post-Print hal-00736952, HAL.
    18. Michal Benko & Alois Kneip, 2005. "Common functional component modelling," SFB 649 Discussion Papers SFB649DP2005-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    20. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:22:y:2007:i:4:p:543-553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.