IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v21y2024i1d10.1007_s10287-024-00509-y.html
   My bibliography  Save this article

Decomposition methods for multi-horizon stochastic programming

Author

Listed:
  • Hongyu Zhang

    (Norwegian University of Science and Technology)

  • Ignacio E. Grossmann

    (Carnegie Mellon University)

  • Asgeir Tomasgard

    (Norwegian University of Science and Technology)

Abstract

Multi-horizon stochastic programming includes short-term and long-term uncertainty in investment planning problems more efficiently than traditional multi-stage stochastic programming. In this paper, we exploit the block separable structure of multi-horizon stochastic linear programming, and establish that it can be decomposed by Benders decomposition and Lagrangean decomposition. In addition, we propose parallel Lagrangean decomposition with primal reduction that, (1) solves the scenario subproblems in parallel, (2) reduces the primal problem by keeping one copy for each scenario group at each stage, and (3) solves the reduced primal problem in parallel. We apply the parallel Lagrangean decomposition with primal reduction, Lagrangean decomposition and Benders decomposition to solve a stochastic energy system investment planning problem. The computational results show that: (a) the Lagrangean type decomposition algorithms have better convergence at the first iterations to Benders decomposition, and (b) parallel Lagrangean decomposition with primal reduction is very efficient for solving multi-horizon stochastic programming problems. Based on the computational results, the choice of algorithms for multi-horizon stochastic programming is discussed.

Suggested Citation

  • Hongyu Zhang & Ignacio E. Grossmann & Asgeir Tomasgard, 2024. "Decomposition methods for multi-horizon stochastic programming," Computational Management Science, Springer, vol. 21(1), pages 1-24, June.
  • Handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00509-y
    DOI: 10.1007/s10287-024-00509-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10287-024-00509-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10287-024-00509-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:21:y:2024:i:1:d:10.1007_s10287-024-00509-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.