IDEAS home Printed from https://ideas.repec.org/a/spr/binfse/v61y2019i4d10.1007_s12599-018-0527-3.html
   My bibliography  Save this article

Decision Support for the Automotive Industry

Author

Listed:
  • Christoph Gleue

    (Leibniz Universität Hannover)

  • Dennis Eilers

    (Leibniz Universität Hannover)

  • Hans-Jörg Mettenheim

    (Leibniz Universität Hannover)

  • Michael H. Breitner

    (Leibniz Universität Hannover)

Abstract

In the automotive industry, it is very common for new vehicles to be leased rather than sold. This implies forecasting an accurate residual value for the vehicles, which is a major factor for determining monthly leasing rates. Either a systematic overestimation or underestimation of future residual values can incur large potential losses in resale value or, respectively, competitive disadvantages. For the purpose of facilitating residual value related management decisions, an operative decision support system is introduced with emphasis on its forecasting capabilities. In the paper, the use of artificial neural networks for this application is demonstrated in a case study based on more than 250,000 data sets of leasing contracts from a major German car manufacturer, completed between 2011 and 2017. The importance of determining price factors and the effect of different time horizons on forecasting accuracy are investigated and practical implications are discussed. In addition, the authors neither found a significant explanatory nor predictive power of external economic factors, which underlines the importance of collecting and taking advantage of vehicle-specific data or, in more general terms, the exclusive data of corporations, which is often only available internally.

Suggested Citation

  • Christoph Gleue & Dennis Eilers & Hans-Jörg Mettenheim & Michael H. Breitner, 2019. "Decision Support for the Automotive Industry," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(4), pages 385-397, August.
  • Handle: RePEc:spr:binfse:v:61:y:2019:i:4:d:10.1007_s12599-018-0527-3
    DOI: 10.1007/s12599-018-0527-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12599-018-0527-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12599-018-0527-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Christian Spreckelsen & Hans‐Jörg Mettenheim & Michael H. Breitner, 2014. "Real‐Time Pricing and Hedging of Options on Currency Futures with Artificial Neural Networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 419-432, September.
    2. Sylvain M. Prado, 2009. "The European used-car market at a glance: Hedonic resale price valuation in automotive leasing industry," Economics Bulletin, AccessEcon, vol. 29(3), pages 2086-2099.
    3. Karl Storchmann, 2004. "On the Depreciation of Automobiles: An International Comparison," Transportation, Springer, vol. 31(4), pages 371-408, November.
    4. Prado, Sylvain Michael & Ananth, Ram, 2012. "Breaking Through Risk Management, a Derivative for the Leasing Industry," Journal of Financial Transformation, Capco Institute, vol. 34, pages 211-218.
    5. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    6. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    7. L. Smith & Baiqiang Jin, 2007. "Modeling exposure to losses on automobile leases," Review of Quantitative Finance and Accounting, Springer, vol. 29(3), pages 241-266, October.
    8. Cornelius Köpp & Hans-Jörg Mettenheim & Michael Breitner, 2014. "Decision Analytics with Heatmap Visualization for Multi-step Ensemble Data," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 6(3), pages 131-140, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renxi Gong & Siqiang Li & Weiyu Peng, 2020. "Research on Multi-Attribute Decision-Making in Condition-Based Maintenance for Power Transformers Based on Cloud and Kernel Vector Space Models," Energies, MDPI, vol. 13(22), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    2. Shin, Ki-Hong & Baek, Woonhak & Kim, Kyungsik & You, Cheol-Hwan & Chang, Ki-Ho & Lee, Dong-In & Yum, Seong Soo, 2019. "Neural network and regression methods for optimizations between two meteorological factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 778-796.
    3. Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”," AQR Working Papers 201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
    4. Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
    5. Dress, Korbinian & Lessmann, Stefan & von Mettenheim, Hans-Jörg, 2018. "Residual value forecasting using asymmetric cost functions," International Journal of Forecasting, Elsevier, vol. 34(4), pages 551-565.
    6. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    7. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    8. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    9. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    10. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    11. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    12. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    13. Korbinian Dress & Stefan Lessmann & Hans-Jorg von Mettenheim, 2017. "Residual Value Forecasting Using Asymmetric Cost Functions," Papers 1707.02736, arXiv.org.
    14. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    15. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    16. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    17. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    18. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    19. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    20. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:binfse:v:61:y:2019:i:4:d:10.1007_s12599-018-0527-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.