IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v10y2023i4d10.1007_s40745-021-00361-w.html
   My bibliography  Save this article

Deep Learning System and It’s Automatic Testing: An Approach

Author

Listed:
  • Rijwan Khan

    (ABES Institute of Technology)

Abstract

The process of testing conventional programs is quite easy as compared to the programs using Deep Learning approach. The term Deep learning (DL) is used for a novel programming approach that is highly data centric and where the governing rules and logic are primarily dependent on the data used for training. Conventionally, Deep Learning models are evaluated by using a test dataset to evaluate their performance against set parameters. The difference in data and logic handling between programs using conventional methods and programs using the DL approach makes it difficult to apply the traditional approaches of testing directly to DL based programs. The accuracy of test data is currently the best measure of the adequacy of testing in the DL based systems. This poses a problem because of the difficulty in availability of test data that is of sufficient quality. This in turn restricts the level of confidence that can be established on the adequacy of testing of DL based systems. Unlike conventional applications, using the conventional programming approaches the lack of quality test data and the lack of interpretability makes the system analysis and detection of defects a difficult task in DL based systems. So testing of DL based models can be done automatically with a different approach compared to normal software.

Suggested Citation

  • Rijwan Khan, 2023. "Deep Learning System and It’s Automatic Testing: An Approach," Annals of Data Science, Springer, vol. 10(4), pages 1019-1033, August.
  • Handle: RePEc:spr:aodasc:v:10:y:2023:i:4:d:10.1007_s40745-021-00361-w
    DOI: 10.1007/s40745-021-00361-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-021-00361-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-021-00361-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bethany Lusch & J. Nathan Kutz & Steven L. Brunton, 2018. "Deep learning for universal linear embeddings of nonlinear dynamics," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Hossein Hassani & Xu Huang & Emmanuel Silva & Mansi Ghodsi, 2020. "Deep Learning and Implementations in Banking," Annals of Data Science, Springer, vol. 7(3), pages 433-446, September.
    3. James M. Tien, 2017. "Internet of Things, Real-Time Decision Making, and Artificial Intelligence," Annals of Data Science, Springer, vol. 4(2), pages 149-178, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preeti Verma & Sunil Patil, 2023. "A Machine Learning Approach and Methodology for Solar Radiation Assessment Using Multispectral Satellite Images," Annals of Data Science, Springer, vol. 10(4), pages 907-932, August.
    2. Heba Soltan Mohamed & M. Masoom Ali & Haitham M. Yousof, 2023. "The Lindley Gompertz Model for Estimating the Survival Rates: Properties and Applications in Insurance," Annals of Data Science, Springer, vol. 10(5), pages 1199-1216, October.
    3. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    4. Xueyan Xu & Fusheng Yu & Runjun Wan, 2023. "A Determining Degree-Based Method for Classification Problems with Interval-Valued Attributes," Annals of Data Science, Springer, vol. 10(2), pages 393-413, April.
    5. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    6. Prashant Singh & Prashant Verma & Nikhil Singh, 2022. "Offline Signature Verification: An Application of GLCM Features in Machine Learning," Annals of Data Science, Springer, vol. 9(6), pages 1309-1321, December.
    7. Hui Zheng & Peng LI & Jing HE, 2022. "A Novel Association Rule Mining Method for Streaming Temporal Data," Annals of Data Science, Springer, vol. 9(4), pages 863-883, August.
    8. Muhammed Navas Thorakkattle & Shazia Farhin & Athar Ali khan, 2022. "Forecasting the Trends of Covid-19 and Causal Impact of Vaccines Using Bayesian Structural time Series and ARIMA," Annals of Data Science, Springer, vol. 9(5), pages 1025-1047, October.
    9. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    10. Vrushabh Gada & Madhura Shegaonkar & Madhura Inamdar & Sharath Dinesh & Darshan Sapariya & Vedant Konde & Mahesh Warang & Ninad Mehendale, 2022. "Data Analysis of COVID-19 Hospital Records Using Contextual Patient Classification System," Annals of Data Science, Springer, vol. 9(5), pages 945-965, October.
    11. Showkat Ahmad Lone & Intekhab Alam & Ahmadur Rahman, 2023. "Statistical Analysis Under Geometric Process in Accelerated Life Testing Plans for Generalized Exponential Distribution," Annals of Data Science, Springer, vol. 10(6), pages 1653-1665, December.
    12. Yanke Bao & Ying Wang, 2022. "Factor Space: The New Science of Causal Relationship," Annals of Data Science, Springer, vol. 9(3), pages 555-570, June.
    13. Manoj Verma & Harish Kumar Ghritlahre & Surendra Bajpai, 2023. "A Case Study of Optimization of a Solar Power Plant Sizing and Placement in Madhya Pradesh, India Using Multi-Objective Genetic Algorithm," Annals of Data Science, Springer, vol. 10(4), pages 933-966, August.
    14. Fábio Prataviera & Aline Martineli Batista & Edwin M. M. Ortega & Gauss M. Cordeiro & Bruno Montoani Silva, 2023. "The Logit Exponentiated Power Exponential Regression with Applications," Annals of Data Science, Springer, vol. 10(3), pages 713-735, June.
    15. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    16. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    17. Intekhab Alam & Sadia Anwar & Lalit Kumar Sharma & Aquil Ahmed, 2023. "Competing Risk Analysis in Constant Stress Partially Accelerated Life Tests Under Censored Information," Annals of Data Science, Springer, vol. 10(5), pages 1379-1403, October.
    18. Ayesha Sohail, 2023. "Genetic Algorithms in the Fields of Artificial Intelligence and Data Sciences," Annals of Data Science, Springer, vol. 10(4), pages 1007-1018, August.
    19. Mohamed Ibrahim & M. Masoom Ali & Haitham M. Yousof, 2023. "The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods," Annals of Data Science, Springer, vol. 10(4), pages 1069-1106, August.
    20. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:10:y:2023:i:4:d:10.1007_s40745-021-00361-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.