IDEAS home Printed from https://ideas.repec.org/a/sot/journl/y2010i46p3-23.html
   My bibliography  Save this article

Demand and routing models for urban goods movement simulation

Author

Listed:
  • Polimeni, Antonio
  • Russo, Francesco
  • Vitetta, Antonino

Abstract

This paper presents a macro-architecture for simulating goods movements in an urban area. Urban goods supply is analysed when the retailer is the decision-maker and chooses to supply his/her shop. Two components are considered: demand in terms of goods supply and vehicle routing with constraints to simulate goods movements. To analyse demand we consider a multi-step model, while to analyse goods movements a Vehicle Routing Problem with Time Windows (VRPTW) is formalized. We examine the distribution process for a VRPTW in which the optimum paths between all the customers are combined to determine the best vehicle trip chain. As regard optimum path search, a multipath approach is proposed that entails the generation of more than one path between two delivery points. Some procedures (traffic assignment, real time system measurement, reverse assignment) to estimate system performance are also proposed. Finally, heuristics to solve the proposed problem are reported and their results are compared with those exact.

Suggested Citation

  • Polimeni, Antonio & Russo, Francesco & Vitetta, Antonino, 2010. "Demand and routing models for urban goods movement simulation," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 46, pages 3-23.
  • Handle: RePEc:sot:journl:y:2010:i:46:p:3-23
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10077/6162
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, June.
    2. Francesco Russo & Antonino Vitetta, 2003. "An assignment model with modified Logit, which obviates enumeration and overlapping problems," Transportation, Springer, vol. 30(2), pages 177-201, May.
    3. Jozefowiez, Nicolas & Semet, Frédéric & Talbi, El-Ghazali, 2009. "An evolutionary algorithm for the vehicle routing problem with route balancing," European Journal of Operational Research, Elsevier, vol. 195(3), pages 761-769, June.
    4. Naoki Ando & Eiichi Taniguchi, 2006. "Travel Time Reliability in Vehicle Routing and Scheduling with Time Windows," Networks and Spatial Economics, Springer, vol. 6(3), pages 293-311, September.
    5. Francesco Russo & Antonio Comi, 2010. "A modelling system to simulate goods movements at an urban scale," Transportation, Springer, vol. 37(6), pages 987-1009, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thoen, Sebastiaan & Tavasszy, Lóránt & de Bok, Michiel & Correia, Goncalo & van Duin, Ron, 2020. "Descriptive modeling of freight tour formation: A shipment-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    2. Thomas Baudel & Laetitia Dablanc & Penelope Aguiar-Melgarejo & Jean Ashton, 2015. "Optimizing Urban Freight Deliveries: From Designing and Testing a Prototype System to Addressing Real Life Challenges," Post-Print hal-01255153, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco P. Deflorio & Jesus Gonzalez-Feliu & Guido Perboli & Roberto Tadei, 2012. "The Influence of Time Windows on the Costs of Urban Freight Distribution Services in City Logistics Applications," Post-Print halshs-00736428, HAL.
    2. Antonio COMI & Agostino NUZZOLO, 2015. "Modelling Challenges To Forecast Urban Goods Demand For Rail," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 10(4), pages 75-91, December.
    3. Comi, Antonio, 2020. "A modelling framework to forecast urban goods flows," Research in Transportation Economics, Elsevier, vol. 80(C).
    4. N. Norouzi & R. Tavakkoli-Moghaddam & M. Ghazanfari & M. Alinaghian & A. Salamatbakhsh, 2012. "A New Multi-objective Competitive Open Vehicle Routing Problem Solved by Particle Swarm Optimization," Networks and Spatial Economics, Springer, vol. 12(4), pages 609-633, December.
    5. Russo, Francesco & Comi, Antonio, 2011. "A model system for the ex-ante assessment of city logistics measures," Research in Transportation Economics, Elsevier, vol. 31(1), pages 81-87.
    6. Paola Panuccio, 2019. "Smart Planning: From City to Territorial System," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    7. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    8. Guido Gentile, 2018. "New Formulations of the Stochastic User Equilibrium with Logit Route Choice as an Extension of the Deterministic Model," Service Science, INFORMS, vol. 52(6), pages 1531-1547, December.
    9. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    10. Piyapong Suwanno & Chaiwat Yaibok & Noriyasu Tsumita & Atsushi Fukuda & Kestsirin Theerathitichaipa & Manlika Seefong & Sajjakaj Jomnonkwao & Rattanaporn Kasemsri, 2023. "Estimation of the Evacuation Time According to Different Flood Depths," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    11. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    12. Chen, Xinwei & Wang, Tong & Thomas, Barrett W. & Ulmer, Marlin W., 2023. "Same-day delivery with fair customer service," European Journal of Operational Research, Elsevier, vol. 308(2), pages 738-751.
    13. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    14. Jesus Gonzalez-Feliu & Aurélie Mercier, 2013. "A combined people-freight accessibility approach for urban retailing and leisure planning at strategic level," Post-Print halshs-00919537, HAL.
    15. Pierluigi Coppola & Fulvio Silvestri, 2021. "Gender Inequality in Safety and Security Perceptions in Railway Stations," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    16. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    17. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    18. Rinaldi, Marco & Viti, Francesco, 2017. "Exact and approximate route set generation for resilient partial observability in sensor location problems," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 86-119.
    19. Luís M. Fernandes & Joaquim J. Júdice & Hanif D. Sherali & António P. Antunes, 2011. "Siting and Sizing of Facilities under Probabilistic Demands," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 420-440, May.
    20. Eva Malichová & Ghadir Pourhashem & Tatiana Kováčiková & Martin Hudák, 2020. "Users’ Perception of Value of Travel Time and Value of Ridesharing Impacts on Europeans’ Ridesharing Participation Intention: A Case Study Based on MoTiV European-Wide Mobility and Behavioral Pattern ," Sustainability, MDPI, vol. 12(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sot:journl:y:2010:i:46:p:3-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Romeo Danielis (email available below). General contact details of provider: https://edirc.repec.org/data/xxxxxxx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.