IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v48y2024i1p7-31.html
   My bibliography  Save this article

An Evaluation of the Energy-Related Carbon Dioxide Emissions From China’s Light Sector to Achieve Sustainable Development Goals

Author

Listed:
  • Yang Yu
  • Jun Nie
  • Atif Jahanger

Abstract

As a high-energy-consuming sector, China’s light sector should have received more attention for its carbon emissions (CO 2 e). However, the literature on energy-related CO 2 e in China’s light sector is limited at present. This paper aims to assess the impact of China’s light sector on CO 2 e. This paper applies the energy consumption technique, input-output analysis technique, and structural decomposition model to analyze China’s light sector energy-related CO 2 e and emission reduction from the input-output perspective. The results show that the energy structure effect, energy intensity effect, and input structure effect are the main restraining factors for the growth of the light sector energy-related CO 2 e, which are caused by the expansion of the energy utilization structure on the supply side of the light sector. The final demand effect is the factor promoting the growth of the light sector energy-related CO 2 e. It reveals that the final demand products in the light sector still have high environmental degradation features. Policymakers should actively enhance and rationally adjust the demand for the light sector in numerous industries to avoid the resource waste caused by the excessive expansion of the light sector.

Suggested Citation

  • Yang Yu & Jun Nie & Atif Jahanger, 2024. "An Evaluation of the Energy-Related Carbon Dioxide Emissions From China’s Light Sector to Achieve Sustainable Development Goals," Evaluation Review, , vol. 48(1), pages 7-31, February.
  • Handle: RePEc:sae:evarev:v:48:y:2024:i:1:p:7-31
    DOI: 10.1177/0193841X231164880
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X231164880
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X231164880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    2. Ishfaq Hamid & Mohammed Ahmar Uddin & Iqbal Thonse Hawaldar & Md Shabbir Alam & D. P. Priyadarshi Joshi & Pabitra Kumar Jena, 2023. "Do Better Institutional Arrangements Lead to Environmental Sustainability: Evidence from India," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    3. Li, Jianglong & Lin, Boqiang, 2017. "Rebound effect by incorporating endogenous energy efficiency: A comparison between heavy industry and light industry," Applied Energy, Elsevier, vol. 200(C), pages 347-357.
    4. Jahanger, Atif & Yu, Yang & Hossain, Mohammad Razib & Murshed, Muntasir & Balsalobre-Lorente, Daniel & Khan, Uzma, 2022. "Going away or going green in NAFTA nations? Linking natural resources, energy utilization, and environmental sustainability through the lens of the EKC hypothesis," Resources Policy, Elsevier, vol. 79(C).
    5. Atif Jahanger & Yang Yu & Ashar Awan & Muhammad Zubair Chishti & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "The Impact of Hydropower Energy in Malaysia Under the EKC Hypothesis: Evidence From Quantile ARDL Approach," SAGE Open, , vol. 12(3), pages 21582440221, July.
    6. Jahanger, Atif & Usman, Muhammad & Murshed, Muntasir & Mahmood, Haider & Balsalobre-Lorente, Daniel, 2022. "The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations," Resources Policy, Elsevier, vol. 76(C).
    7. Ya Chen & Wei Xu & Qian Zhou & Zhixiang Zhou, 2020. "Total Factor Energy Efficiency, Carbon Emission Efficiency, and Technology Gap: Evidence from Sub-Industries of Anhui Province in China," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    8. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "How effective has the low-carbon city pilot policy been as an environmental intervention in curbing pollution? Evidence from Chinese industrial enterprises," Energy Economics, Elsevier, vol. 118(C).
    2. Yang, Shubo & Jahanger, Atif & Hossain, Mohammad Razib, 2023. "Does China's low-carbon city pilot intervention limit electricity consumption? An analysis of industrial energy efficiency using time-varying DID model," Energy Economics, Elsevier, vol. 121(C).
    3. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    4. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    5. Huang, Haiping & Huang, Baolian & Sun, Aijun, 2023. "How do mineral resources influence eco-sustainability in China? Dynamic role of renewable energy and green finance," Resources Policy, Elsevier, vol. 85(PA).
    6. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    7. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    8. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    9. Daniel Croner and Ivan Frankovic, 2018. "A Structural Decomposition Analysis of Global and National Energy Intensity Trends," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    10. Muhammad Usman & Atif Jahanger & Magdalena Radulescu & Daniel Balsalobre-Lorente, 2022. "Do Nuclear Energy, Renewable Energy, and Environmental-Related Technologies Asymmetrically Reduce Ecological Footprint? Evidence from Pakistan," Energies, MDPI, vol. 15(9), pages 1-24, May.
    11. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    12. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    13. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    15. Sun, Xiaoqi & Liu, Xiaojia, 2020. "Decomposition analysis of debt’s impact on China’s energy consumption," Energy Policy, Elsevier, vol. 146(C).
    16. He Li & Kevin Lo & Mark Wang & Pingyu Zhang & Longyi Xue, 2016. "Industrial Energy Consumption in Northeast China under the Revitalisation Strategy: A Decomposition and Policy Analysis," Energies, MDPI, vol. 9(7), pages 1-13, July.
    17. Maliyamu Abudureheman & Qingzhe Jiang & Xiucheng Dong & Cong Dong, 2022. "CO 2 Emissions in China: Does the Energy Rebound Matter?," Energies, MDPI, vol. 15(12), pages 1-25, June.
    18. Atif Jahanger & Muhammad Usman & Daniel Balsalobre‐Lorente, 2022. "Linking institutional quality to environmental sustainability," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1749-1765, December.
    19. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    20. Lin, Boqiang & Li, Zhensheng, 2020. "Analysis of the natural gas demand and subsidy in China: A multi-sectoral perspective," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:48:y:2024:i:1:p:7-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.