IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v51y2024i4p889-903.html
   My bibliography  Save this article

Characterizing urban lifestyle signatures using motif properties in network of places

Author

Listed:
  • Junwei Ma
  • Bo Li
  • Ali Mostafavi

Abstract

The lifestyles of urban dwellers could reveal important insights regarding the dynamics and complexity of cities. The availability of human movement data captured from cell phones enables characterization of distinct and recurrent human daily visitation patterns. Despite growing research on analysis of lifestyle patterns in cities, little is known about the characteristics of people’s lifestyle patterns at urban scale. This limitation is primarily due to challenges in restriction of human movement data to protect the privacy of users. To address this gap, this study constructed networks of places to model cities based on location-based human visitation data. We examined the motifs in the networks of places to map and characterize lifestyle patterns at urban scale. The results show that (1) people’s lifestyles in cities can be well depicted and quantified based on distribution and attributes of motifs in networks of places; (2) motifs show stability in quantity and distance as well as periodicity on weekends and weekdays indicating the stability of lifestyle patterns in cities; (3) networks of places and lifestyle patterns show similarities across different metropolitan areas implying the universality of lifestyle signatures across cities; (4) lifestyles represented by attributed motifs are spatially heterogeneous suggesting variations of lifestyle patterns within different population groups based on where they live in a city. The findings provide deeper insights into urban lifestyle signatures and significant implications for data-informed urban planning and management.

Suggested Citation

  • Junwei Ma & Bo Li & Ali Mostafavi, 2024. "Characterizing urban lifestyle signatures using motif properties in network of places," Environment and Planning B, , vol. 51(4), pages 889-903, May.
  • Handle: RePEc:sae:envirb:v:51:y:2024:i:4:p:889-903
    DOI: 10.1177/23998083231206171
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083231206171
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083231206171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    2. Esteban Moro & Dan Calacci & Xiaowen Dong & Alex Pentland, 2021. "Mobility patterns are associated with experienced income segregation in large US cities," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Thomas Louail & Maxime Lenormand & Miguel Picornell & Oliva García Cantú & Ricardo Herranz & Enrique Frias-Martinez & José J. Ramasco & Marc Barthelemy, 2015. "Uncovering the spatial structure of mobility networks," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    4. Jinzhou Cao & Qingquan Li & Wei Tu & Feilong Wang, 2019. "Characterizing preferred motif choices and distance impacts," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-17, April.
    5. Riccardo Di Clemente & Miguel Luengo-Oroz & Matias Travizano & Sharon Xu & Bapu Vaitla & Marta C. González, 2018. "Sequences of purchases in credit card data reveal lifestyles in urban populations," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    6. Yang Xu & Shih-Lung Shaw & Ziliang Zhao & Ling Yin & Zhixiang Fang & Qingquan Li, 2015. "Understanding aggregate human mobility patterns using passive mobile phone location data: a home-based approach," Transportation, Springer, vol. 42(4), pages 625-646, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    2. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    3. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    4. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    5. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    6. D. Woods & A. Cunningham & C. E. Utazi & M. Bondarenko & L. Shengjie & G. E. Rogers & P. Koper & C. W. Ruktanonchai & E. zu Erbach-Schoenberg & A. J. Tatem & J. Steele & A. Sorichetta, 2022. "Exploring methods for mapping seasonal population changes using mobile phone data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    7. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    8. Zuoxian Gan & Min Yang & Tao Feng & Harry Timmermans, 2020. "Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations," Transportation, Springer, vol. 47(1), pages 315-336, February.
    9. Jungmin Kim & Juyong Park & Wonjae Lee, 2018. "Why do people move? Enhancing human mobility prediction using local functions based on public records and SNS data," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-29, February.
    10. Clodomir Santana & Federico Botta & Hugo Barbosa & Filippo Privitera & Ronaldo Menezes & Riccardo Di Clemente, 2023. "COVID-19 is linked to changes in the time–space dimension of human mobility," Nature Human Behaviour, Nature, vol. 7(10), pages 1729-1739, October.
    11. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    12. Saiz, Albert & Salazar-Miranda, Arianna, 2023. "Understanding Urban Economies, Land Use, and Social Dynamics in the City: Big Data and Measurement," IZA Discussion Papers 16501, Institute of Labor Economics (IZA).
    13. Huang, Zhiren & Wang, Pu & Zhang, Fan & Gao, Jianxi & Schich, Maximilian, 2018. "A mobility network approach to identify and anticipate large crowd gatherings," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 147-170.
    14. Takahiro Yabe & Bernardo García Bulle Bueno & Xiaowen Dong & Alex Pentland & Esteban Moro, 2023. "Behavioral changes during the COVID-19 pandemic decreased income diversity of urban encounters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Shiwei Lu & Shih-Lung Shaw & Zhixiang Fang & Xirui Zhang & Ling Yin, 2017. "Exploring the Effects of Sampling Locations for Calibrating the Huff Model Using Mobile Phone Location Data," Sustainability, MDPI, vol. 9(1), pages 1-18, January.
    16. Zhang, Xiaohu & Xu, Yang & Tu, Wei & Ratti, Carlo, 2018. "Do different datasets tell the same story about urban mobility — A comparative study of public transit and taxi usage," Journal of Transport Geography, Elsevier, vol. 70(C), pages 78-90.
    17. Xiping Yang & Zhiyuan Zhao & Shiwei Lu, 2016. "Exploring Spatial-Temporal Patterns of Urban Human Mobility Hotspots," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
    18. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    19. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    20. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:51:y:2024:i:4:p:889-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.