IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v34y2023i7p2521-2543.html
   My bibliography  Save this article

Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach

Author

Listed:
  • Bohuang Pan
  • Tomiwa Sunday Adebayo
  • Ridwan Lanre Ibrahim
  • Mamdouh Abdulaziz Saleh Al-Faryan

Abstract

Nuclear energy has sparked international attention as one of the most important strategies for reducing emissions thanks to its ability to provide low-carbon power. Based on this interesting fact, the current research explores the effect of nuclear energy on CO 2 emissions in the leading countries by nuclear power consumption using a quarterly dataset from 1990 to 2019. The study employs the quantile-on-quantile (QQ) estimator, which accounts for both non-parametric and conventional analyses and enhances the provision of unbiased and consistent estimates. In addition, the Granger causality in quantiles approach is adopted to assess the causality in quantiles between the variables of investigation. The outcomes from the QQ estimator reveals that in the majority of the quantiles, nuclear energy contributes to decreased degradation of the environment in the USA, France, Russia, South Korea, Canada, Ukraine, Germany, and Sweden. Contrawise, the feedbacks from Spain and China expose that Nuclear Energy Consumption (NUC) contributes to the deterioration of the environment. Moreover, the outcomes of the causality test disclose that nuclear energy and CO 2 emissions can predict each other in the majority of the quantiles. The findings above provide profound ramifications for policymakers planning nuclear energy and CO 2 -emission policies towards achieving sustainable environment in the sample countries and beyond..

Suggested Citation

  • Bohuang Pan & Tomiwa Sunday Adebayo & Ridwan Lanre Ibrahim & Mamdouh Abdulaziz Saleh Al-Faryan, 2023. "Does nuclear energy consumption mitigate carbon emissions in leading countries by nuclear power consumption? Evidence from quantile causality approach," Energy & Environment, , vol. 34(7), pages 2521-2543, November.
  • Handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2521-2543
    DOI: 10.1177/0958305X221112910
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221112910
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221112910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao, Zhijie, 2009. "Quantile cointegrating regression," Journal of Econometrics, Elsevier, vol. 150(2), pages 248-260, June.
    2. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    3. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    4. Lau, Lin-Sea & Choong, Chee-Keong & Ng, Cheong-Fatt & Liew, Feng-Mei & Ching, Suet-Ling, 2019. "Is nuclear energy clean? Revisit of Environmental Kuznets Curve hypothesis in OECD countries," Economic Modelling, Elsevier, vol. 77(C), pages 12-20.
    5. Harrison Fell & Alex Gilbert & Jesse D. Jenkins & Matto Mildenberger, 2022. "Nuclear power and renewable energy are both associated with national decarbonization," Nature Energy, Nature, vol. 7(1), pages 25-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy & Wohar, Mark E., 2018. "Do house prices hedge inflation in the US? A quantile cointegration approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 15-26.
    2. Shawkat Hammoudeh & Walid Mensi & Jin Seo Cho, 2022. "Spillovers between exchange rate pressure and CDS bid-ask spreads, reserve assets and oil prices using the quantile ARDL model," International Economics, CEPII research center, issue 170, pages 66-78.
    3. Mighri, Zouheir & Ragoubi, Hanen & Sarwar, Suleman & Wang, Yihan, 2022. "Quantile Granger causality between US stock market indices and precious metal prices," Resources Policy, Elsevier, vol. 76(C).
    4. Vo, Duc Hong & Vo, Anh The & Ho, Chi Minh & Nguyen, Ha Minh, 2020. "The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries," Renewable Energy, Elsevier, vol. 161(C), pages 278-292.
    5. Muhammad Asif Qureshi & Jawaid Ahmed Qureshi & Ammar Ahmed & Shahzad Qaiser & Ramsha Ali & Arshian Sharif, 2020. "The Dynamic Relationship Between Technology Innovation and Human Development in Technologically Advanced Countries: Fresh Insights from Quantiles-on-Quantile Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(2), pages 555-580, November.
    6. Cho, Jin Seo & Kim, Tae-hwan & Shin, Yongcheol, 2015. "Quantile cointegration in the autoregressive distributed-lag modeling framework," Journal of Econometrics, Elsevier, vol. 188(1), pages 281-300.
    7. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    8. Tomiwa Sunday Adebayo & Seyi Saint Akadiri & Joshua Sunday Riti & Ada Tony Odu, 2023. "Interaction among geopolitical risk, trade openness, economic growth, carbon emissions and Its implication on climate change in india," Energy & Environment, , vol. 34(5), pages 1305-1326, August.
    9. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    10. Cai, Charlie X. & McGuinness, Paul B. & Zhang, Qi, 2011. "The pricing dynamics of cross-listed securities: The case of Chinese A- and H-shares," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 2123-2136, August.
    11. Mpho Bosupeng, 2015. "The Fisher Effect Using Differences in The Deterministic Term," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 5(4), pages 1031-1031.
    12. Du, Yuqiu & Wang, Wendi, 2023. "The role of green financing, agriculture development, geopolitical risk, and natural resource on environmental pollution in China," Resources Policy, Elsevier, vol. 82(C).
    13. Honda, Toshio, 2013. "Nonparametric LAD cointegrating regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 150-162.
    14. Jin Seo Cho & Matthew Greenwood‐Nimmo & Yongcheol Shin, 2023. "Recent developments of the autoregressive distributed lag modelling framework," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 7-32, February.
    15. Tsong, Ching-Chuan & Lee, Cheng-Feng, 2013. "Quantile cointegration analysis of the Fisher hypothesis," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 186-198.
    16. Awasthi, Kritika & Ahmad, Wasim & Rahman, Abdul & Phani, B.V., 2020. "When US sneezes, clichés spread: How do the commodity index funds react then?," Resources Policy, Elsevier, vol. 69(C).
    17. Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
    18. Nicholas Apergis & Vassilios Babalos & Christina Christou & Rangan Gupta, 2015. "Identifying Asymmetries between Socially Responsible and Conventional Investments," Working Papers 201537, University of Pretoria, Department of Economics.
    19. Sharif, Arshian & Baris-Tuzemen, Ozge & Uzuner, Gizem & Ozturk, Ilhan & Sinha, Avik, 2020. "Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach," MPRA Paper 100044, University Library of Munich, Germany.
    20. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:34:y:2023:i:7:p:2521-2543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.