IDEAS home Printed from https://ideas.repec.org/a/pal/risman/v26y2024i3d10.1057_s41283-024-00141-9.html
   My bibliography  Save this article

Liability-driven investment for pension funds: stochastic optimization with real assets

Author

Listed:
  • Chul Jang

    (University of London
    Hanyang University)

  • Andrew Clare

    (University of London)

  • Iqbal Owadally

    (University of London)

Abstract

Using a multi-stage stochastic programming method, we suggest an optimal liability-driven investment (LDI) strategy for a closed defined-benefit pension fund including real assets. The objective is to jointly optimize contribution, funding ratio, and buyout cost, subject to a constraint on downside risk in terms of expected shortfall of assets relative to liabilities. Over a 10-year planning horizon, the optimal LDI strategy with a key-rate duration-matching bond portfolio outperforms the corresponding strategy with a duration-convexity matching bond portfolio as well as a strategy with an aggregate bond index-tracking portfolio. When real assets are introduced, the optimal LDI strategy includes significant investment in infrastructure and real estate, illiquidity notwithstanding. Nevertheless, delays in sales of real assets induced by illiquidity can increase downside risk.

Suggested Citation

  • Chul Jang & Andrew Clare & Iqbal Owadally, 2024. "Liability-driven investment for pension funds: stochastic optimization with real assets," Risk Management, Palgrave Macmillan, vol. 26(3), pages 1-32, September.
  • Handle: RePEc:pal:risman:v:26:y:2024:i:3:d:10.1057_s41283-024-00141-9
    DOI: 10.1057/s41283-024-00141-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41283-024-00141-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41283-024-00141-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    2. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    3. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    4. Jinkyu Lee & Do-Gyun Kwon & Yongjae Lee & Jang Ho Kim & Woo Chang Kim, 2023. "Large-scale financial planning via a partially observable stochastic dual dynamic programming framework," Quantitative Finance, Taylor & Francis Journals, vol. 23(9), pages 1341-1360, September.
    5. Konicz, Agnieszka Karolina & Mulvey, John M., 2015. "Optimal savings management for individuals with defined contribution pension plans," European Journal of Operational Research, Elsevier, vol. 243(1), pages 233-247.
    6. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    7. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities allowing for inflation and labour income risk," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1132-1146.
    8. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    9. Dempster, Michael, 2011. "Asset liability management for individual households †Abstract of the London Discussion," British Actuarial Journal, Cambridge University Press, vol. 16(2), pages 441-467, November.
    10. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    11. Dempster, M. A. H. & Medova, E. A., 2011. "Asset liability management for individual households," British Actuarial Journal, Cambridge University Press, vol. 16(2), pages 405-439, November.
    12. Woo Chang Kim & Do-Gyun Kwon & Yongjae Lee & Jang Ho Kim & Changle Lin, 2020. "Personalized goal-based investing via multi-stage stochastic goal programming," Quantitative Finance, Taylor & Francis Journals, vol. 20(3), pages 515-526, March.
    13. E. A. Medova & J. K. Murphy & A. P. Owen & K. Rehman, 2008. "Individual asset liability management," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 547-560.
    14. Alois Geyer & William T. Ziemba, 2008. "The Innovest Austrian Pension Fund Financial Planning Model InnoALM," Operations Research, INFORMS, vol. 56(4), pages 797-810, August.
    15. Michael Dempster & Elena Medova, 2011. "Planning for Retirement: Asset Liability Management for Individuals," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 16, pages 409-432, Palgrave Macmillan.
    16. Duarte, Thiago B. & Valladão, Davi M. & Veiga, Álvaro, 2017. "Asset liability management for open pension schemes using multistage stochastic programming under Solvency-II-based regulatory constraints," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 177-188.
    17. Andrew Ang & Bingxu Chen & Suresh Sundaresan, 2013. "Liability Investment with Downside Risk," NBER Working Papers 19030, National Bureau of Economic Research, Inc.
    18. Christian Hertrich, 2013. "Asset Allocation Considerations for Pension Insurance Funds," Springer Books, Springer, edition 127, number 978-3-658-02167-2, June.
    19. Consiglio, Andrea & Tumminello, Michele & Zenios, Stavros A., 2015. "Designing and pricing guarantee options in defined contribution pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 267-279.
    20. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-arbitrage bounds for financial scenarios," European Journal of Operational Research, Elsevier, vol. 236(2), pages 657-663.
    21. Rudolf, Markus & Ziemba, William T., 2004. "Intertemporal surplus management," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 975-990, February.
    22. Agnieszka Konicz & David Pisinger & Alex Weissensteiner, 2015. "Optimal annuity portfolio under inflation risk," Computational Management Science, Springer, vol. 12(3), pages 461-488, July.
    23. Kjetil Høyland & Stein W. Wallace, 2001. "Generating Scenario Trees for Multistage Decision Problems," Management Science, INFORMS, vol. 47(2), pages 295-307, February.
    24. Gregory R. Duffee, 1998. "The Relation Between Treasury Yields and Corporate Bond Yield Spreads," Journal of Finance, American Finance Association, vol. 53(6), pages 2225-2241, December.
    25. Nick Georgiopoulos, 2020. "Liability-driven investments of life insurers under investment credit risk," Risk Management, Palgrave Macmillan, vol. 22(2), pages 83-107, June.
    26. Detemple, Jérôme & Rindisbacher, Marcel, 2008. "Dynamic asset liability management with tolerance for limited shortfalls," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 281-294, December.
    27. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    28. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities allowing for inflation and labour income risk," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1132-1146.
    2. Owadally, Iqbal & Jang, Chul & Clare, Andrew, 2021. "Optimal investment for a retirement plan with deferred annuities," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 51-62.
    3. Agnieszka Karolina Konicz & David Pisinger & Alex Weissensteiner, 2016. "Optimal retirement planning with a focus on single and joint life annuities," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 275-295, February.
    4. Agnieszka Konicz & David Pisinger & Alex Weissensteiner, 2015. "Optimal annuity portfolio under inflation risk," Computational Management Science, Springer, vol. 12(3), pages 461-488, July.
    5. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    6. Anne Pedersen & Alex Weissensteiner & Rolf Poulsen, 2013. "Financial planning for young households," Annals of Operations Research, Springer, vol. 205(1), pages 55-76, May.
    7. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    8. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    9. Gülpinar, Nalan & Pachamanova, Dessislava, 2013. "A robust optimization approach to asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2031-2041.
    10. Sebastiano Vitali & Vittorio Moriggia & Miloš Kopa, 2017. "Optimal pension fund composition for an Italian private pension plan sponsor," Computational Management Science, Springer, vol. 14(1), pages 135-160, January.
    11. Das, Sanjiv R. & Ostrov, Daniel & Radhakrishnan, Anand & Srivastav, Deep, 2022. "Dynamic optimization for multi-goals wealth management," Journal of Banking & Finance, Elsevier, vol. 140(C).
    12. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    13. Libo Yin & Liyan Han, 2013. "Options strategies for international portfolios with overall risk management via multi-stage stochastic programming," Annals of Operations Research, Springer, vol. 206(1), pages 557-576, July.
    14. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    15. Maurer, Raimond & Mitchell, Olivia S. & Rogalla, Ralph, 2009. "Managing contribution and capital market risk in a funded public defined benefit plan: Impact of CVaR cost constraints," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 25-34, August.
    16. Barucci, Emilio & Biffis, Enrico & Marazzina, Daniele, 2023. "Health insurance, portfolio choice, and retirement incentives," European Journal of Operational Research, Elsevier, vol. 307(2), pages 910-921.
    17. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2014. "No-arbitrage bounds for financial scenarios," European Journal of Operational Research, Elsevier, vol. 236(2), pages 657-663.
    18. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    19. Robert Ferstl & Alex Weissensteiner, 2010. "Backtesting short-term treasury management strategies based on multi-stage stochastic programming," Journal of Asset Management, Palgrave Macmillan, vol. 11(2), pages 94-112, June.
    20. Wong, Man Hong, 2013. "Investment models based on clustered scenario trees," European Journal of Operational Research, Elsevier, vol. 227(2), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:risman:v:26:y:2024:i:3:d:10.1057_s41283-024-00141-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.