IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v21y2023i5p1647-1679..html
   My bibliography  Save this article

Identifying Risk Factors and Their Premia: A Study on Electricity Prices

Author

Listed:
  • Wei Wei
  • Asger Lunde

Abstract

Risk premia are difficult to identify in nonstorable commodities such as electricity. In this article, we propose a modified Fama–French regression framework and show that when the spot prices do not follow a martingale—a common assumption in the electricity market—model specifications play an important role in detecting time-varying risk premia in the futures market. With this insight, we propose a multi-factor model that captures important dynamics in electricity prices and an estimation method based on particle Markov chain Monte Carlo to separate risk factors in energy prices. Using spot and futures data in the Germany/Austria electricity market, we demonstrate that our proposed model surpasses alternative models that ignore some of risk factors in forecasting spot prices and in detecting time-varying risk premia. Based on our proposed model, we separately identify risk premia carried by individual risk factors and document large variations in the premia of each factor.

Suggested Citation

  • Wei Wei & Asger Lunde, 2023. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1647-1679.
  • Handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1647-1679.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbac019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. Ron Alquist & Lutz Kilian, 2010. "What do we learn from the price of crude oil futures?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 539-573.
    3. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    4. Kilian, Lutz & Baumeister, Christiane, 2014. "A General Approach to Recovering Market Expectations from Futures Prices With an Application to Crude Oil," CEPR Discussion Papers 10162, C.E.P.R. Discussion Papers.
    5. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    6. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Füss, Roland & Mahringer, Steffen & Prokopczuk, Marcel, 2015. "Electricity derivatives pricing with forward-looking information," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 34-57.
    9. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    10. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    11. Christian Redl & Derek Bunn, 2013. "Determinants of the premium in forward contracts," Journal of Regulatory Economics, Springer, vol. 43(1), pages 90-111, January.
    12. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
    13. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    14. A. Stan Hurn & Annastiina Silvennoinen & Timo Teräsvirta, 2016. "A Smooth Transition Logit Model of The Effects of Deregulation in the Electricity Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(4), pages 707-733, June.
    15. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    16. Benth, Fred Espen & Cartea, Álvaro & Kiesel, Rüdiger, 2008. "Pricing forward contracts in power markets by the certainty equivalence principle: Explaining the sign of the market risk premium," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2006-2021, October.
    17. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    18. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.
    19. Nikolay Gospodinov, 2009. "A New Look at the Forward Premium Puzzle," Journal of Financial Econometrics, Oxford University Press, vol. 7(3), pages 312-338, Summer.
    20. Cartea, Álvaro & Villaplana, Pablo, 2008. "Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2502-2519, December.
    21. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    22. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    23. Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
    24. Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2018. "Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 88-100, January.
    25. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    26. Romano, Joseph P. & Wolf, Michael, 2016. "Efficient computation of adjusted p-values for resampling-based stepdown multiple testing," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 38-40.
    27. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wei & Asger Lunde, 2020. "Identifying Risk Factors and Their Premia: A Study on Electricity Prices," Monash Econometrics and Business Statistics Working Papers 10/20, Monash University, Department of Econometrics and Business Statistics.
    2. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    3. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    4. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
    5. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Asger Lunde & Anne Floor Brix & Wei Wei, 2015. "A Generalized Schwartz Model for Energy Spot Prices - Estimation using a Particle MCMC Method," CREATES Research Papers 2015-46, Department of Economics and Business Economics, Aarhus University.
    7. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    8. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    9. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    10. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    11. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    12. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    13. Usman Zafar & Neil Kellard & Dmitri Vinogradov, 2022. "Multistage optimization filter for trend‐based short‐term forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 345-360, March.
    14. Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021. "Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO," Energies, MDPI, vol. 14(11), pages 1-17, June.
    15. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
    16. Д.О. Афанасьев1 & * & Е.А. Федорова2 & **, 2019. "Краткосрочное Прогнозирование Цены Электроэнергии На Российском Рынке С Использованием Класса Моделей Scarx," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 55(1), pages 68-84, январь.
    17. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    18. Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2017. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Neural network models," HSC Research Reports HSC/17/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    19. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    20. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.

    More about this item

    Keywords

    risk factors; risk premia; futures; electricity markets;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:21:y:2023:i:5:p:1647-1679.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.