IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v26y2023i3p444-466..html
   My bibliography  Save this article

Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model

Author

Listed:
  • Otilia Boldea
  • Adriana Cornea-Madeira
  • João Madeira

Abstract

SummaryIn this paper, we estimate the path of daily SARS-CoV-2 infections in England from the beginning of the pandemic until the end of 2021. We employ a dynamic intensity model, where the mean intensity conditional on the past depends both on past intensity of infections and past realized infections. The model parameters are time-varying, and we employ a multiplicative specification along with logistic transition functions to disentangle the time-varying effects of nonpharmaceutical policy interventions, of different variants, and of protection (waning) of vaccines/boosters. Our model results indicate that earlier interventions and vaccinations are key to containing an infection wave. We consider several scenarios that account for more infectious variants and different protection levels of vaccines/boosters. These scenarios suggest that, as vaccine protection wanes, containing a new wave in infections and an associated increase in hospitalizations in the near future may require further booster campaigns and/or nonpharmaceutical interventions.

Suggested Citation

  • Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
  • Handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:444-466.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utad004
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gourieroux, C. & Jasiak, J., 2023. "Time varying Markov process with partially observed aggregate data: An application to coronavirus," Journal of Econometrics, Elsevier, vol. 232(1), pages 35-51.
    2. Arianna Agosto & Paolo Giudici, 2020. "A Poisson Autoregressive Model to Understand COVID-19 Contagion Dynamics," Risks, MDPI, vol. 8(3), pages 1-8, July.
    3. Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
    4. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    5. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    6. Liu, Laura & Moon, Hyungsik Roger & Schorfheide, Frank, 2021. "Panel forecasts of country-level Covid-19 infections," Journal of Econometrics, Elsevier, vol. 220(1), pages 2-22.
    7. Khismatullina, Marina & Vogt, Michael, 2023. "Nonparametric comparison of epidemic time trends: The case of COVID-19," Journal of Econometrics, Elsevier, vol. 232(1), pages 87-108.
    8. Ganna Rozhnova & Christiaan H. Dorp & Patricia Bruijning-Verhagen & Martin C. J. Bootsma & Janneke H. H. M. Wijgert & Marc J. M. Bonten & Mirjam E. Kretzschmar, 2021. "Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    10. Peter Reinhard Hansen, 2022. "Relative contagiousness of emerging virus variants: An analysis of the Alpha, Delta, and Omicron SARS-CoV-2 variants [Increased risk of hospitalisation associated with infection with SARS-CoV-2 lin," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 739-761.
    11. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    12. Toulis, Panos, 2021. "Estimation of Covid-19 prevalence from serology tests: A partial identification approach," Journal of Econometrics, Elsevier, vol. 220(1), pages 193-213.
    13. João Viana & Christiaan H. Dorp & Ana Nunes & Manuel C. Gomes & Michiel Boven & Mirjam E. Kretzschmar & Marc Veldhoen & Ganna Rozhnova, 2021. "Controlling the pandemic during the SARS-CoV-2 vaccination rollout," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.
    2. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," CESifo Working Paper Series 8977, CESifo.
    3. Jonas E. Arias & Jesús Fernández-Villaverde & Juan Rubio Ramírez & Minchul Shin, 2021. "The Causal Effects of Lockdown Policies on Health and Macroeconomic Outcomes," NBER Working Papers 28617, National Bureau of Economic Research, Inc.
    4. Hartl, Tobias, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242380, Verein für Socialpolitik / German Economic Association.
    5. Tobias Hartl, 2021. "Monitoring the pandemic: A fractional filter for the COVID-19 contact rate," Papers 2102.10067, arXiv.org.
    6. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    7. Daniel L. Millimet & Christopher F. Parmeter, 2022. "COVID‐19 severity: A new approach to quantifying global cases and deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1178-1215, July.
    8. Julliard, Christian & Shi, Ran & Yuan, Kathy, 2023. "The spread of COVID-19 in London: Network effects and optimal lockdowns," Journal of Econometrics, Elsevier, vol. 235(2), pages 2125-2154.
    9. Cem Cakmakli & Yasin Simsek, 2023. "Bridging the Covid-19 Data and the Epidemiological Model using Time-Varying Parameter SIRD Model," Papers 2301.13692, arXiv.org.
    10. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    11. Arnab K Ghosh & Sara Venkatraman & Evgeniya Reshetnyak & Mangala Rajan & Anjile An & John K Chae & Mark A Unruh & David Abramson & Charles DiMaggio & Nathaniel Hupert, 2022. "Association between city-wide lockdown and COVID-19 hospitalization rates in multigenerational households in New York City," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-13, March.
    12. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Guglielmo Maria Caporale & Woo-Young Kang & Fabio Spagnolo & Nicola Spagnolo, 2022. "The COVID-19 pandemic, policy responses and stock markets in the G20," International Economics, CEPII research center, issue 172, pages 77-90.
    14. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    15. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    16. Chaohua Dong & Jiti Gao & Oliver Linton & Bin peng, 2020. "On Time Trend of COVID-19: A Panel Data Study," Monash Econometrics and Business Statistics Working Papers 22/20, Monash University, Department of Econometrics and Business Statistics.
    17. Trystan Leng & Edward M. Hill & Alex Holmes & Emma Southall & Robin N. Thompson & Michael J. Tildesley & Matt J. Keeling & Louise Dyson, 2022. "Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Fu, Xinjie & Wang, JinRong, 2024. "Dynamic behaviors and non-instantaneous impulsive vaccination of an SAIQR model on complex networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    19. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    20. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:26:y:2023:i:3:p:444-466.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.