IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i3p597-614..html
   My bibliography  Save this article

Splitting strategies for post-selection inference

Author

Listed:
  • D García Rasines
  • G A Young

Abstract

SummaryWe consider the problem of providing valid inference for a selected parameter in a sparse regression setting. It is well known that classical regression tools can be unreliable in this context because of the bias generated in the selection step. Many approaches have been proposed in recent years to ensure inferential validity. In this article we consider a simple alternative to data splitting based on randomizing the response vector, which allows for higher selection and inferential power than the former, and is applicable with an arbitrary selection rule. We perform a theoretical and empirical comparison of the two methods and derive a central limit theorem for the randomization approach. Our investigations show that the gain in power can be substantial.

Suggested Citation

  • D García Rasines & G A Young, 2023. "Splitting strategies for post-selection inference," Biometrika, Biometrika Trust, vol. 110(3), pages 597-614.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:3:p:597-614.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac070
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqing Fan & Shaojun Guo & Ning Hao, 2012. "Variance estimation using refitted cross‐validation in ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 37-65, January.
    2. L Hong & T A Kuffner & R Martin, 2018. "On overfitting and post-selection uncertainty assessments," Biometrika, Biometrika Trust, vol. 105(1), pages 221-224.
    3. Danijel Kivaranovic & Hannes Leeb, 2021. "On the Length of Post-Model-Selection Confidence Intervals Conditional on Polyhedral Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 845-857, April.
    4. Emmanuel Candès & Yingying Fan & Lucas Janson & Jinchi Lv, 2018. "Panning for gold: ‘model‐X’ knockoffs for high dimensional controlled variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 551-577, June.
    5. Rajen D. Shah & Richard J. Samworth, 2013. "Variable selection with error control: another look at stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 55-80, January.
    6. DiCiccio, Cyrus J. & DiCiccio, Thomas J. & Romano, Joseph P., 2020. "Exact tests via multiple data splitting," Statistics & Probability Letters, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solari, Aldo & Djordjilović, Vera, 2022. "Multi split conformal prediction," Statistics & Probability Letters, Elsevier, vol. 184(C).
    2. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    3. Adel Javanmard & Jason D. Lee, 2020. "A flexible framework for hypothesis testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 685-718, July.
    4. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    5. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    6. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
    7. Brice Ozenne & Esben Budtz-Jørgensen & Sebastian Elgaard Ebert, 2023. "Controlling the familywise error rate when performing multiple comparisons in a linear latent variable model," Computational Statistics, Springer, vol. 38(1), pages 1-23, March.
    8. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Rejoinder on: Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 59-67, March.
    11. Armeen Taeb & Parikshit Shah & Venkat Chandrasekaran, 2020. "False discovery and its control in low rank estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 997-1027, September.
    12. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    13. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    14. Jianqing Fan & Quefeng Li & Yuyan Wang, 2017. "Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 247-265, January.
    15. Subhadeep Mukhopadhyay, 2021. "InfoGram and Admissible Machine Learning," Papers 2108.07380, arXiv.org, revised Aug 2021.
    16. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    17. Challet, Damien & Bongiorno, Christian & Pelletier, Guillaume, 2021. "Financial factors selection with knockoffs: Fund replication, explanatory and prediction networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    18. Zhang, Tonglin & Lin, Ge, 2021. "Generalized k-means in GLMs with applications to the outbreak of COVID-19 in the United States," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    19. Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
    20. Pedro Delicado & Daniel Peña, 2023. "Understanding complex predictive models with ghost variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 107-145, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:3:p:597-614.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.