IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v629y2024i8011d10.1038_s41586-024-07341-z.html
   My bibliography  Save this article

Copper-catalysed dehydrogenation or lactonization of C(sp3)–H bonds

Author

Listed:
  • Shupeng Zhou

    (The Scripps Research Institute)

  • Zi-Jun Zhang

    (The Scripps Research Institute)

  • Jin-Quan Yu

    (The Scripps Research Institute)

Abstract

Cytochrome P450 enzymes are known to catalyse bimodal oxidation of aliphatic acids via radical intermediates, which partition between pathways of hydroxylation and desaturation1,2. Developing analogous catalytic systems for remote C–H functionalization remains a significant challenge3–5. Here, we report the development of Cu(I)-catalysed bimodal dehydrogenation/lactonization reactions of synthetically common N-methoxyamides through radical abstractions of the γ-aliphatic C–H bonds. The feasibility of switching from dehydrogenation to lactonization is also demonstrated by altering reaction conditions. The use of a readily available amide as both radical precursor and internal oxidant allows for the development of redox-neutral C–H functionalization reactions with methanol as the sole side product. These C–H functionalization reactions using a Cu(I) catalyst with loading as low as 0.5 mol.% is applied to the diversification of a wide range of aliphatic acids including drug molecules and natural products. The exceptional compatibility of this catalytic system with a wide range of oxidatively sensitive functionality demonstrates the unique advantage of using a simple amide substrate as a mild internal oxidant.

Suggested Citation

  • Shupeng Zhou & Zi-Jun Zhang & Jin-Quan Yu, 2024. "Copper-catalysed dehydrogenation or lactonization of C(sp3)–H bonds," Nature, Nature, vol. 629(8011), pages 363-369, May.
  • Handle: RePEc:nat:nature:v:629:y:2024:i:8011:d:10.1038_s41586-024-07341-z
    DOI: 10.1038/s41586-024-07341-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-024-07341-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-024-07341-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:629:y:2024:i:8011:d:10.1038_s41586-024-07341-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.