IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v12y2009i1p29-53.html
   My bibliography  Save this article

Dynamic programming and mean-variance hedging with partial execution risk

Author

Listed:
  • Koichi Matsumoto

Abstract

No abstract is available for this item.

Suggested Citation

  • Koichi Matsumoto, 2009. "Dynamic programming and mean-variance hedging with partial execution risk," Review of Derivatives Research, Springer, vol. 12(1), pages 29-53, April.
  • Handle: RePEc:kap:revdev:v:12:y:2009:i:1:p:29-53
    DOI: 10.1007/s11147-009-9033-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-009-9033-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-009-9033-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    2. Koichi Matsumoto, 2006. "Optimal portfolio of low liquid assets with a log-utility function," Finance and Stochastics, Springer, vol. 10(1), pages 121-145, January.
    3. Huyên Pham, 2000. "On quadratic hedging in continuous time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(2), pages 315-339, April.
    4. Jean-Paul Laurent & Huyen Pham, 1999. "Dynamic programming and mean-variance hedging," Post-Print hal-03675953, HAL.
    5. Takuji Arai, 2005. "An extension of mean-variance hedging to the discontinuous case," Finance and Stochastics, Springer, vol. 9(1), pages 129-139, January.
    6. Martin Schweizer & HuyËn Pham & (*), Thorsten RheinlÄnder, 1998. "Mean-variance hedging for continuous processes: New proofs and examples," Finance and Stochastics, Springer, vol. 2(2), pages 173-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koichi Matsumoto, 2009. "Mean-Variance Hedging with Uncertain Trade Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(3), pages 219-252.
    2. Samuel Drapeau & Yunbo Zhang, 2019. "Pricing and Hedging Performance on Pegged FX Markets Based on a Regime Switching Model," Papers 1910.08344, arXiv.org, revised May 2020.
    3. Mercurio, Fabio, 2001. "Claim pricing and hedging under market incompleteness and "mean-variance" preferences," European Journal of Operational Research, Elsevier, vol. 133(3), pages 635-652, September.
    4. Stephane Goutte & Armand Ngoupeyou, 2012. "Optimization problem and mean variance hedging on defaultable claims," Papers 1209.5953, arXiv.org.
    5. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2009. "Variance Optimal Hedging for continuous time processes with independent increments and applications," Papers 0912.0372, arXiv.org.
    6. Antje Mahayni, 2003. "Effectiveness of Hedging Strategies under Model Misspecification and Trading Restrictions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(05), pages 521-552.
    7. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    8. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Feb 2023.
    9. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2013. "Variance optimal hedging for continuous time additive processes and applications," Papers 1302.1965, arXiv.org.
    10. Ewald, Christian-Oliver & Nawar, Roy & Siu, Tak Kuen, 2013. "Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance," Energy Economics, Elsevier, vol. 36(C), pages 97-107.
    11. Sai Hung Marten Ting & Christian-Oliver Ewald, 2013. "On the performance of asymptotic locally risk minimising hedges in the Heston stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 939-954, May.
    12. Mostovyi, Oleksii, 2020. "Asymptotic analysis of the expected utility maximization problem with respect to perturbations of the numéraire," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4444-4469.
    13. Vicky Henderson, 2002. "Analytical Comparisons of Option prices in Stochastic Volatility Models," OFRC Working Papers Series 2002mf03, Oxford Financial Research Centre.
    14. Kohlmann, Michael & Tang, Shanjian, 2000. "Recent Advances in Backward Stochastics Riccati Equations and Their Applications," CoFE Discussion Papers 00/30, University of Konstanz, Center of Finance and Econometrics (CoFE).
    15. Dokuchaev, Nikolai & Yu Zhou, Xun, 2001. "Optimal investment strategies with bounded risks, general utilities, and goal achieving," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 289-309, April.
    16. M. Mania & R. Tevzadze, 2003. "Backward Stochastic PDE and Imperfect Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 663-692.
    17. Francesca Biagini & Paolo Guasoni & Maurizio Pratelli, 2000. "Mean‐Variance Hedging for Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 109-123, April.
    18. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE q‐OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556, October.
    19. René Caldentey & Martin Haugh, 2006. "Optimal Control and Hedging of Operations in the Presence of Financial Markets," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 285-304, May.
    20. Aleš Černý, 2007. "Optimal Continuous‐Time Hedging With Leptokurtic Returns," Mathematical Finance, Wiley Blackwell, vol. 17(2), pages 175-203, April.

    More about this item

    Keywords

    Hedging; Derivatives; Liquidity; Execution; G13; 91B28; 93E20; 90C39;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:12:y:2009:i:1:p:29-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.