IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v60y2015i1p143-164.html
   My bibliography  Save this article

The Bioeconomics of Honey Bees and Pollination

Author

Listed:
  • A. Champetier
  • D. Sumner
  • J. Wilen

Abstract

We develop a model of beekeeping economics that incorporates within-year and between-year dynamics in the size of the honey bee population. Our model also accounts for the fact that the pollen and nectar collected by bees on crops are limiting resources for both bee growth and honey production. We argue that diminishing returns to foraging by bees is a central constraint of the economic problem of beekeeping and that availability of forage plays an important role in determining the abundance of honey bees. Furthermore, we show how the behaviors of individual beekeepers are aggregated through markets for bees and characterize the response of the beekeeping industry to changes in honey prices, winter losses, and other factors. Our model sets the bases for an empirical approach to estimate the relative contributions of different biological and economic factors to changes in honey bee populations in the United States over the past 60 years. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • A. Champetier & D. Sumner & J. Wilen, 2015. "The Bioeconomics of Honey Bees and Pollination," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 143-164, January.
  • Handle: RePEc:kap:enreec:v:60:y:2015:i:1:p:143-164
    DOI: 10.1007/s10640-014-9761-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-014-9761-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-014-9761-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Léonard,Daniel & Long,Ngo van, 1992. "Optimal Control Theory and Static Optimization in Economics," Cambridge Books, Cambridge University Press, number 9780521331586.
    2. Schmickl, Thomas & Crailsheim, Karl, 2007. "HoPoMo: A model of honeybee intracolonial population dynamics and resource management," Ecological Modelling, Elsevier, vol. 204(1), pages 219-245.
    3. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    4. Cheung, Steven N S, 1973. "The Fable of the Bees: An Economic Investigation," Journal of Law and Economics, University of Chicago Press, vol. 16(1), pages 11-33, April.
    5. Randal R. Rucker & Walter N. Thurman & Michael Burgett, 2012. "Honey Bee Pollination Markets and the Internalization of Reciprocal Benefits," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 956-977.
    6. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Despina Popovska Stojanov & Lazo Dimitrov & Jiří Danihlík & Aleksandar Uzunov & Miroljub Golubovski & Sreten Andonov & Robert Brodschneider, 2021. "Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries," Agriculture, MDPI, vol. 11(5), pages 1-11, April.
    2. Antoine Champetier & Daniel A Sumner, 2019. "Marginal Costs and Likely Supply Elasticities for Pollination and Honey," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(5), pages 1373-1385.
    3. Jerome Faure & Lauriane Mouysset & Sabrina Gaba, 2021. "Combining incentives for pollination with collective action to provide a bundle of ecosystem services in farmland," Papers 2104.12640, arXiv.org.
    4. Luciano Pilati & Mario Prestamburgo, 2016. "Sequential Relationship between Profitability and Sustainability: The Case of Migratory Beekeeping," Sustainability, MDPI, vol. 8(1), pages 1-8, January.
    5. Narjes, Manuel Ernesto & Lippert, Christian, 2019. "The Optimal Supply of Crop Pollination and Honey From Wild and Managed Bees: An Analytical Framework for Diverse Socio-Economic and Ecological Settings," Ecological Economics, Elsevier, vol. 157(C), pages 278-290.
    6. Zhang, Shemei & Ma, Jiliang & Zhang, Liu & Sun, Zhanli & Zhao, Zhijun & Khan, Nawab, 2022. "Does adoption of honeybee pollination promote the economic value of kiwifruit farmers? Evidence from China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(14), pages 1-14.
    7. Goodrich, Brittney, 2016. "The Roles of Risk and Honey Bee Colony Strength in Determining Almond Pollination Contract Provisions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236183, Agricultural and Applied Economics Association.
    8. Goodrich, Brittney K & Williams, Jeffrey & Goodhue, Rachael E, 2018. "The Great Bee Migration: Spatial and Temporal Variation in Honey Bee Colony Shipments into California for Almond Pollination," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266657, Southern Agricultural Economics Association.
    9. Goodrich, Brittney K., 2019. "Do more bees imply higher fees? Honey bee colony strength as a determinant of almond pollination fees," Food Policy, Elsevier, vol. 83(C), pages 150-160.
    10. Ioannis Arzoumanidis & Andrea Raggi & Luigia Petti, 2019. "Life Cycle Assessment of Honey: Considering the Pollination Service," Administrative Sciences, MDPI, vol. 9(1), pages 1-13, March.
    11. Goodrich, Brittney K. & Goodhue, Rachael E., 2020. "Are All Colonies Created Equal? The Role of Honey Bee Colony Strength in Almond Pollination Contracts," Ecological Economics, Elsevier, vol. 177(C).
    12. Brittney K. Goodrich & Jeffrey C. Williams & Rachael E. Goodhue, 2019. "The Great Bee Migration: Supply Analysis of Honey Bee Colony Shipments into California for Almond Pollination Services," American Journal of Agricultural Economics, John Wiley & Sons, vol. 101(5), pages 1353-1372, October.
    13. Faure, Jérôme & Mouysset, Lauriane & Gaba, Sabrina, 2023. "Combining incentives with collective action to provide pollination and a bundle of ecosystem services in farmland," Ecosystem Services, Elsevier, vol. 63(C).
    14. Goodrich, Brittney, 2016. "The Roles of Risk and Honey Bee Colony Strength in Determining Almond Pollination Contract Provisions," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 242324, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luciano Pilati & Vasco Boatto, 2014. "Jointness in Sites: The Case of Migratory Beekeeping," DEM Discussion Papers 2014/10, Department of Economics and Management.
    2. Goodrich, Brittney K., 2019. "Do more bees imply higher fees? Honey bee colony strength as a determinant of almond pollination fees," Food Policy, Elsevier, vol. 83(C), pages 150-160.
    3. Ioannis Arzoumanidis & Andrea Raggi & Luigia Petti, 2019. "Life Cycle Assessment of Honey: Considering the Pollination Service," Administrative Sciences, MDPI, vol. 9(1), pages 1-13, March.
    4. Melathopoulos, Andony P. & Cutler, G. Christopher & Tyedmers, Peter, 2015. "Where is the value in valuing pollination ecosystem services to agriculture?," Ecological Economics, Elsevier, vol. 109(C), pages 59-70.
    5. Luciano Pilati & Vasco Boatto, 2013. "Bio-Economics Of Allocatable Pollination Services: Sequential Choices And Jointness In Sites," DEM Discussion Papers 2013/18, Department of Economics and Management.
    6. Narjes, Manuel Ernesto & Lippert, Christian, 2016. "Longan fruit farmers' demand for policies aimed at conserving native pollinating bees in Northern Thailand," Ecosystem Services, Elsevier, vol. 18(C), pages 58-67.
    7. Vesa Kanniainen & Tuula Lehtonen & Ilkka Mellin, 2013. "Honeybee Economics - Implications for Ecology Policy," CESifo Working Paper Series 4204, CESifo.
    8. Panchalingam, Thadchaigeni & Jones Ritten, Chian & Shogren, Jason F. & Ehmke, Mariah D. & Bastian, Christopher T. & Parkhurst, Gregory M., 2019. "Adding realism to the Agglomeration Bonus: How endogenous land returns affect habitat fragmentation," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    9. Despina Popovska Stojanov & Lazo Dimitrov & Jiří Danihlík & Aleksandar Uzunov & Miroljub Golubovski & Sreten Andonov & Robert Brodschneider, 2021. "Direct Economic Impact Assessment of Winter Honeybee Colony Losses in Three European Countries," Agriculture, MDPI, vol. 11(5), pages 1-11, April.
    10. Kuan, A. Carmen & DeGrandi-Hoffman, Gloria & Curry, Robert J. & Garber, Kristina V. & Kanarek, Andrew R. & Snyder, Marcia N. & Wolfe, Kurt L. & Purucker, S. Thomas, 2018. "Sensitivity analyses for simulating pesticide impacts on honey bee colonies," Ecological Modelling, Elsevier, vol. 376(C), pages 15-27.
    11. Balzan, Mario V & Caruana, Julio & Zammit, Annrica, 2018. "Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state," Land Use Policy, Elsevier, vol. 75(C), pages 711-725.
    12. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    13. Lippert, Christian & Feuerbacher, Arndt & Narjes, Manuel, 2021. "Revisiting the economic valuation of agricultural losses due to large-scale changes in pollinator populations," Ecological Economics, Elsevier, vol. 180(C).
    14. Nicholas W Calderone, 2012. "Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-27, May.
    15. repec:idb:brikps:64718 is not listed on IDEAS
    16. Centner, Terence J. & Brewer, Brady & Leal, Isaac, 2018. "Reducing damages from sulfoxaflor use through mitigation measures to increase the protection of pollinator species," Land Use Policy, Elsevier, vol. 75(C), pages 70-76.
    17. Margot Karlikow & Evan Amalfitano & Xiaolong Yang & Jennifer Doucet & Abigail Chapman & Peivand Sadat Mousavi & Paige Homme & Polina Sutyrina & Winston Chan & Sofia Lemak & Alexander F. Yakunin & Adam, 2023. "CRISPR-induced DNA reorganization for multiplexed nucleic acid detection," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Melathopoulos, Andony P. & Stoner, Alexander M., 2015. "Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms," Ecological Economics, Elsevier, vol. 117(C), pages 173-181.
    19. Laura Christ & Daniel C. Dreesmann, 2022. "SAD but True: Species Awareness Disparity in Bees Is a Result of Bee-Less Biology Lessons in Germany," Sustainability, MDPI, vol. 14(5), pages 1-15, February.
    20. Giannini, Tereza C. & Acosta, André L. & Garófalo, Carlos A. & Saraiva, Antonio M. & Alves-dos-Santos, Isabel & Imperatriz-Fonseca, Vera L., 2012. "Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil," Ecological Modelling, Elsevier, vol. 244(C), pages 127-131.
    21. Tremlett, Constance J. & Peh, Kelvin S.-H. & Zamora-Gutierrez, Veronica & Schaafsma, Marije, 2021. "Value and benefit distribution of pollination services provided by bats in the production of cactus fruits in central Mexico," Ecosystem Services, Elsevier, vol. 47(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:60:y:2015:i:1:p:143-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.