IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i3d10.1007_s10614-022-10333-8.html
   My bibliography  Save this article

Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash

Author

Listed:
  • Rama K. Malladi

    (California State University Dominguez Hills)

Abstract

Machine learning (ML), a transformational technology, has been successfully applied to forecasting events down the road. This paper demonstrates that supervised ML techniques can be used in recession and stock market crash (more than 20% drawdown) forecasting. After learning from strictly past monthly data, ML algorithms detected the Covid-19 recession by December 2019, six months before the official NBER announcement. Moreover, ML algorithms foresaw the March 2020 S&P500 crash two months before it happened. The current labor market and housing are harbingers of a future U.S. recession (in 3 months). Financial factors have a bigger role to play in stock market crashes than economic factors. The labor market appears as a top-two feature in predicting both recessions and crashes. ML algorithms detect that the U.S. exited recession before December 2020, even though the official NBER announcement has not yet been made. They also do not anticipate a U.S. stock market crash before March 2021. ML methods have three times higher false discovery rates of recessions compared to crashes.

Suggested Citation

  • Rama K. Malladi, 2024. "Application of Supervised Machine Learning Techniques to Forecast the COVID-19 U.S. Recession and Stock Market Crash," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1021-1045, March.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:3:d:10.1007_s10614-022-10333-8
    DOI: 10.1007/s10614-022-10333-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10333-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10333-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F. & French, Kenneth R., 2017. "International tests of a five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 123(3), pages 441-463.
    2. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    3. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    4. Olivier Blanchard & John Simon, 2001. "The Long and Large Decline in U.S. Output Volatility," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 32(1), pages 135-174.
    5. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    6. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    7. White, Eugene N, 1990. "The Stock Market Boom and Crash of 1929 Revisited," Journal of Economic Perspectives, American Economic Association, vol. 4(2), pages 67-83, Spring.
    8. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    9. Matthew D. Shapiro & Mark W. Watson, 1988. "Sources of Business Cycle Fluctuations," NBER Chapters, in: NBER Macroeconomics Annual 1988, Volume 3, pages 111-156, National Bureau of Economic Research, Inc.
    10. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    11. Bai, Min & Xu, Limin & Yu, Chia-Feng (Jeffrey) & Zurbruegg, Ralf, 2020. "Superstition and stock price crash risk," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    12. Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
    13. Aderemi O. Adewumi & Andronicus A. Akinyelu, 2017. "A survey of machine-learning and nature-inspired based credit card fraud detection techniques," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 937-953, November.
    14. Anders Johansen & Didier Sornette, 2010. "Shocks, Crashes and Bubbles in Financial Markets," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 53(2), pages 201-253.
    15. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    16. Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
    17. Ahrens, R., 2002. "Predicting recessions with interest rate spreads: a multicountry regime-switching analysis," Journal of International Money and Finance, Elsevier, vol. 21(4), pages 519-537, August.
    18. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
    19. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    20. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    21. Dokko, Yoon & Edelstein, Robert H, 1989. "How Well Do Economists Forecast Stock Market Prices? A Study of the Livingston Surveys," American Economic Review, American Economic Association, vol. 79(4), pages 865-871, September.
    22. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    23. Saul H. Hymans, 1973. "On the Use of Leading Indicators to Predict Cyclical Turning Points," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 4(2), pages 339-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).
    2. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    3. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    4. Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
    5. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    6. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    7. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2021. "Bridging factor and sparse models," Papers 2102.11341, arXiv.org, revised Sep 2022.
    8. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    9. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    10. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    11. Monica Martinez-Blasco & Vanessa Serrano & Francesc Prior & Jordi Cuadros, 2023. "Analysis of an event study using the Fama–French five-factor model: teaching approaches including spreadsheets and the R programming language," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    12. Ciciretti, Rocco & Dalò, Ambrogio & Dam, Lammertjan, 2023. "The contributions of betas versus characteristics to the ESG premium," Journal of Empirical Finance, Elsevier, vol. 71(C), pages 104-124.
    13. Yu Wang & Haicheng Shu, 2019. "Evaluating the Performance of Factor Pricing Models for Different Stock Market Trends: Evidence from China," Working Papers 2019-10-10, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    14. Berggrun, Luis & Cardona, Emilio & Lizarzaburu, Edmundo, 2020. "Firm profitability and expected stock returns: Evidence from Latin America," Research in International Business and Finance, Elsevier, vol. 51(C).
    15. José Luis Miralles-Quirós & María Mar Miralles-Quirós & José Manuel Nogueira, 2020. "Sustainable Development Goals and Investment Strategies: The Profitability of Using Five-Factor Fama-French Alphas," Sustainability, MDPI, vol. 12(5), pages 1-16, February.
    16. Gonzalo, Jesús & Pitarakis, Jean-Yves, 2021. "Spurious relationships in high-dimensional systems with strong or mild persistence," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1480-1497.
    17. Cujean, Julien & Andrei, Daniel & Fournier, Mathieu, 2019. "The Low-Minus-High Portfolio and the Factor Zoo," CEPR Discussion Papers 14153, C.E.P.R. Discussion Papers.
    18. Lin, Qi, 2022. "Understanding idiosyncratic momentum in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    19. Muhammad Usman Arshad, 2021. "Forecasted E/P Ratio and ROE: Shanghai Stock Exchange (SSE), China," SAGE Open, , vol. 11(2), pages 21582440211, June.
    20. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.

    More about this item

    Keywords

    Machine learning; Forecasting; Financial econometrics; Recession; Stock market crash;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:3:d:10.1007_s10614-022-10333-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.