IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3731-d1385832.html
   My bibliography  Save this article

Sustainable Infrastructure Maintenance: Crack Depth Detection in Tunnel Linings via Natural Temperature Variations and Infrared Imaging

Author

Listed:
  • Wenchuan Gu

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Xuezeng Liu

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Zhen Li

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

Abstract

In this research, we propose the use of infrared detection methods for identifying cracks in the tunnel lining of concrete structures. Through thermal simulation experiments on pre-existing cracks, we investigate the heat conduction patterns in cracked linings under natural temperature variations. The influence of temperature differences inside and outside the lining, crack depth, and crack width on the temperature distribution on the inner surface of the lining is analyzed by using a controlled variable approach. This exploration aims to assess the feasibility and applicable conditions of using infrared thermal imaging technology for detecting lining crack defects, contributing to sustainable maintenance of infrastructure. We further validate the experimental approach through numerical simulations. Considering the temperature distribution on the inner surface of the lining, it becomes feasible to comprehensively determine the location and depth of cracks. This offers a novel and rapid inspection method for tunnel lining cracks, thereby enhancing the sustainability of tunnel infrastructure.

Suggested Citation

  • Wenchuan Gu & Xuezeng Liu & Zhen Li, 2024. "Sustainable Infrastructure Maintenance: Crack Depth Detection in Tunnel Linings via Natural Temperature Variations and Infrared Imaging," Sustainability, MDPI, vol. 16(9), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3731-:d:1385832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3731/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3731-:d:1385832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.