IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3675-d1384580.html
   My bibliography  Save this article

An Automated Fish-Feeding System Based on CNN and GRU Neural Networks

Author

Listed:
  • Surak Son

    (Department of Software, College of Engineering, Catholic Kwandong University, Gangneung 25601, Republic of Korea)

  • Yina Jeong

    (Department of Software, College of Engineering, Catholic Kwandong University, Gangneung 25601, Republic of Korea)

Abstract

AI plays a pivotal role in predicting plant growth in agricultural contexts and in creating optimized environments for cultivation. However, unlike agriculture, the application of AI in aquaculture is predominantly focused on diagnosing animal conditions and monitoring them for users. This paper introduces an Automated Fish-feeding System (AFS) based on Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs), aiming to establish an automated system akin to smart farming in the aquaculture sector. The AFS operates by precisely calculating feed rations through two main modules. The Fish Growth Measurement Module (FGMM) utilizes fish data to assess the current growth status of the fish and transmits this information to the Feed Ration Prediction Module (FRPM). The FRPM integrates sensor data from the fish farm, fish growth data, and current feed ration status as time-series data, calculating the increase or decrease rate of ration based on the present fish conditions. This paper automates feed distribution within fish farms through these two modules and verifies the efficiency of automated feed distribution. Simulation results indicate that the FGMM neural network model effectively identifies fish body length with a minor deviation of less than 0.1%, while the FRPM neural network model demonstrates proficiency in predicting ration using a GRU cell with a structured layout of 64 × 48.

Suggested Citation

  • Surak Son & Yina Jeong, 2024. "An Automated Fish-Feeding System Based on CNN and GRU Neural Networks," Sustainability, MDPI, vol. 16(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3675-:d:1384580
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3675/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3675/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3675-:d:1384580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.