IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3552-d1381728.html
   My bibliography  Save this article

A Topic Modeling Approach to Determine Supply Chain Management Priorities Enabled by Digital Twin Technology

Author

Listed:
  • Enna Hirata

    (Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan)

  • Daisuke Watanabe

    (Department of Logistics and Information Engineering, Tokyo University of Marine Science and Technology, Etchujima, Tokyo 135-8533, Japan)

  • Athanasios Chalmoukis

    (Department of Shipping, Trade and Transport, University of the Aegean, 811 00 Mitilini, Greece)

  • Maria Lambrou

    (Department of Shipping, Trade and Transport, University of the Aegean, 811 00 Mitilini, Greece)

Abstract

Background: This paper examines scientific papers in the field of digital twins to explore the different areas of application in supply chains. Methods: Using a machine learning-based topic modeling approach, this study aims to provide insights into the key areas of supply chain management that benefit from digital twin capabilities. Results: The research findings highlight key priorities in the areas of infrastructure, construction, business, technology, manufacturing, blockchain, and agriculture, providing a comprehensive perspective. Conclusions: Our research findings confirm several recommendations. First, the machine learning-based model identifies new areas that are not addressed in the human review results. Second, while the human review results put more emphasis on practicality, such as management activities, processes, and methods, the machine learning results pay more attention to macro perspectives, such as infrastructure, technology, and business. Third, the machine learning-based model is able to extract more granular information; for example, it identifies core technologies beyond digital twins, including AI/reinforcement learning, picking robots, cybersecurity, 5G networks, the physical internet, additive manufacturing, and cloud manufacturing.

Suggested Citation

  • Enna Hirata & Daisuke Watanabe & Athanasios Chalmoukis & Maria Lambrou, 2024. "A Topic Modeling Approach to Determine Supply Chain Management Priorities Enabled by Digital Twin Technology," Sustainability, MDPI, vol. 16(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3552-:d:1381728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    2. Milena Kajba & Borut Jereb & Tina Cvahte Ojsteršek, 2023. "Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach," Energies, MDPI, vol. 16(9), pages 1-23, May.
    3. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    4. Ivanov, Dmitry, 2023. "Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability," International Journal of Production Economics, Elsevier, vol. 263(C).
    5. Catherine Marinagi & Panagiotis Reklitis & Panagiotis Trivellas & Damianos Sakas, 2023. "The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0," Sustainability, MDPI, vol. 15(6), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bastian Schaefermeier & Gerd Stumme & Tom Hanika, 2021. "Topic space trajectories," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5759-5795, July.
    2. Tobias Koopmann & Maximilian Stubbemann & Matthias Kapa & Michael Paris & Guido Buenstorf & Tom Hanika & Andreas Hotho & Robert Jäschke & Gerd Stumme, 2021. "Proximity dimensions and the emergence of collaboration: a HypTrails study on German AI research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9847-9868, December.
    3. D. Thorleuchter & D. Van Den Poel, 2013. "Weak Signal Identification with Semantic Web Mining," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/860, Ghent University, Faculty of Economics and Business Administration.
    4. van Loon, Austin, 2022. "Three Families of Automated Text Analysis," SocArXiv htnej, Center for Open Science.
    5. Triss Ashton & Nicholas Evangelopoulos & Victor Prybutok, 2014. "Extending monitoring methods to textual data: a research agenda," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(4), pages 2277-2294, July.
    6. Romain Gauchon & Stéphane Loisel & Jean-Louis Rullière, 2020. "Health-policyholder clustering using health consumption," Post-Print hal-02156058, HAL.
    7. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.
    8. Giovanna Maria Dora Dore, 2023. "A Natural Language Processing Analysis of Newspapers Coverage of Hong Kong Protests Between 1998 and 2020," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(1), pages 143-166, September.
    9. Bastian Schäfermeier & Johannes Hirth & Tom Hanika, 2023. "Research topic flows in co-authorship networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5051-5078, September.
    10. Xiangguang Dai & Chuandong Li & Biqun Xiang, 2018. "Graph Sparse Nonnegative Matrix Factorization Algorithm Based on the Inertial Projection Neural Network," Complexity, Hindawi, vol. 2018, pages 1-12, March.
    11. Irina Wedel & Michael Palk & Stefan Voß, 2022. "A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter," Information Systems Frontiers, Springer, vol. 24(5), pages 1635-1646, October.
    12. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    13. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    14. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    15. Mohammed Salem Binwahlan, 2023. "Polynomial Networks Model for Arabic Text Summarization," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 10(2), pages 74-84, February.
    16. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    17. Chao Wei & Senlin Luo & Xincheng Ma & Hao Ren & Ji Zhang & Limin Pan, 2016. "Locally Embedding Autoencoders: A Semi-Supervised Manifold Learning Approach of Document Representation," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-20, January.
    18. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    19. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    20. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3552-:d:1381728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.