IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i9p3523-d1381105.html
   My bibliography  Save this article

Influence of Regional Temperature Anomalies on Strawberry Yield: A Study Using Multivariate Copula Analysis

Author

Listed:
  • Poornima Unnikrishnan

    (Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Kumaraswamy Ponnambalam

    (Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Fakhri Karray

    (Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
    Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence, Masdar City, Abu Dhabi 50819, United Arab Emirates)

Abstract

A thorough understanding of the impact of climatic factors on agricultural production is crucial for improving crop models and enhancing predictability of crop prices and yields. Fluctuations in crop yield and price can have significant implications for the market sector and farming community. Given the projected increase in frequency and intensity of extreme events, reliable modelling of cropping patterns becomes essential. Temperature anomalies are expected to play a prominent role in future extreme events, emphasizing the need to comprehend their influence on crop yield. Forecasting extreme yield, which encompasses both the highest and lowest levels of agricultural production within a given time period, along with peak crop prices representing the highest market values, poses greater challenges in forecasting compared to other values. Probability-based predictions, accounting for uncertainty and variability, offer a more accurate approach for extreme value estimation and risk assessment. In this study, we employ a multivariate analysis based on vine copula to explore the interdependencies between temperature anomalies and daily strawberry yield in Santa Maria, California. By considering the maximum and minimum daily yields each month, we observe an increased probability of yield loss with rising temperature anomalies. While we do not explicitly consider the specific impacts of temperature anomalies under individual Representative Concentration Pathway (RCP) scenarios, our analysis is conducted within the broader context of the current global warming scenario. This allows us to capture the overall anticipated effects of regional temperature anomalies on agriculture. The findings of this study have potential impacts and consequences for understanding the vulnerability of agricultural systems and improving crop model predictions. By enhancing our understanding of the relationships between temperature anomalies and crop yield, we can inform decision-making processes related to the impact of climate change on agriculture. This research contributes to the ongoing efforts in improving agricultural sustainability and resilience in the face of changing climatic conditions.

Suggested Citation

  • Poornima Unnikrishnan & Kumaraswamy Ponnambalam & Fakhri Karray, 2024. "Influence of Regional Temperature Anomalies on Strawberry Yield: A Study Using Multivariate Copula Analysis," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3523-:d:1381105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/9/3523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/9/3523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    2. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    3. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    4. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    5. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Analyzing the dependence structure of various sectors in the Brazilian market: A Pair Copula Construction approach," Economic Modelling, Elsevier, vol. 35(C), pages 199-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
    2. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.
    3. Nguyen, Cuong & Bhatti, M. Ishaq & Komorníková, Magda & Komorník, Jozef, 2016. "Gold price and stock markets nexus under mixed-copulas," Economic Modelling, Elsevier, vol. 58(C), pages 283-292.
    4. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    5. Ning, Cathy & Wirjanto, Tony S., 2009. "Extreme return-volume dependence in East-Asian stock markets: A copula approach," Finance Research Letters, Elsevier, vol. 6(4), pages 202-209, December.
    6. Panayi, Efstathios & Peters, Gareth W. & Danielsson, Jon & Zigrand, Jean-Pierre, 2018. "Designating market maker behaviour in limit order book markets," Econometrics and Statistics, Elsevier, vol. 5(C), pages 20-44.
    7. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    8. Zhu, Pengfei & Lu, Tuantuan & Shang, Yue & Zhang, Zerong & Wei, Yu, 2023. "Can China's national carbon trading market hedge the risks of light and medium crude oil? A comparative analysis with the European carbon market," Finance Research Letters, Elsevier, vol. 58(PA).
    9. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    10. Janani Sri S. & Parthajit Kayal & G. Balasubramanian, 2022. "Can Equity be Safe-haven for Investment?," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 21(1), pages 32-63, March.
    11. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    12. Chia-Hsun Hsieh & Shian-Chang Huang, 2012. "Time-Varying Dependency and Structural Changes in Currency Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(2), pages 94-127, March.
    13. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    14. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    15. Ölkers, Tim & Liu, Shuang & Mußhoff, Oliver, 2023. "A typology of Malian farmers and their credit repayment performance - An unsupervised machine learning approach," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334547, Agricultural Economics Society - AES.
    16. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    17. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    18. Wang Ruihua & Wang Hongjun, 2020. "Correlation Analysis of Stock Market and Fund Market Based on M-Copula-EGARCH-M-GED Model," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 240-252, June.
    19. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    20. Guobin Fan & Eric Girardin & Wong K. Wong & Yong Zeng, 2015. "The Risk of Individual Stocks’ Tail Dependence with the Market and Its Effect on Stock Returns," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:9:p:3523-:d:1381105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.