IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v5y2022i1p6-107d734438.html
   My bibliography  Save this article

A Bayesian Approach for Imputation of Censored Survival Data

Author

Listed:
  • Shirin Moghaddam

    (Department of Mathematics and Statistics (MACSI), University of Limerick, V94 T9PX Limerick, Ireland
    School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland)

  • John Newell

    (School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland)

  • John Hinde

    (School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 TK33 Galway, Ireland)

Abstract

A common feature of much survival data is censoring due to incompletely observed lifetimes. Survival analysis methods and models have been designed to take account of this and provide appropriate relevant summaries, such as the Kaplan–Meier plot and the commonly quoted median survival time of the group under consideration. However, a single summary is not really a relevant quantity for communication to an individual patient, as it conveys no notion of variability and uncertainty, and the Kaplan–Meier plot can be difficult for the patient to understand and also is often mis-interpreted, even by some physicians. This paper considers an alternative approach of treating the censored data as a form of missing, incomplete data and proposes an imputation scheme to construct a completed dataset. This allows the use of standard descriptive statistics and graphical displays to convey both typical outcomes and the associated variability. We propose a Bayesian approach to impute any censored observations, making use of other information in the dataset, and provide a completed dataset. This can then be used for standard displays, summaries, and even, in theory, analysis and model fitting. We particularly focus on the data visualisation advantages of the completed data, allowing displays such as density plots, boxplots, etc, to complement the usual Kaplan–Meier display of the original dataset. We study the performance of this approach through a simulation study and consider its application to two clinical examples.

Suggested Citation

  • Shirin Moghaddam & John Newell & John Hinde, 2022. "A Bayesian Approach for Imputation of Censored Survival Data," Stats, MDPI, vol. 5(1), pages 1-19, January.
  • Handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:6-107:d:734438
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/5/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/5/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Royston, 2001. "The Lognormal Distribution as a Model for Survival Time in Cancer, With an Emphasis on Prognostic Factors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 55(1), pages 89-104, March.
    2. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    3. Cheryl L. Faucett & Nathaniel Schenker & Jeremy M. G. Taylor, 2002. "Survival Analysis Using Auxiliary Variables Via Multiple Imputation, with Application to AIDS Clinical Trial Data," Biometrics, The International Biometric Society, vol. 58(1), pages 37-47, March.
    4. Taylor, Jeremy M. G. & Murray, Susan & Hsu, Chiu-Hsieh, 2002. "Survival estimation and testing via multiple imputation," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 221-232, July.
    5. Wei Pan, 2001. "A Multiple Imputation Approach to Regression Analysis for Doubly Censored Data with Application to AIDS Studies," Biometrics, The International Biometric Society, vol. 57(4), pages 1245-1250, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kehui Yao & Jun Zhu & Daniel J. O'Brien & Daniel Walsh, 2023. "Bayesian spatio‐temporal survival analysis for all types of censoring with application to a wildlife disease study," Environmetrics, John Wiley & Sons, Ltd., vol. 34(8), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachaud, Michée A. & Bravo-Ureta, Boris E., 2022. "A Bayesian statistical analysis of return to agricultural R&D investment in Latin America: Implications for food security," Technology in Society, Elsevier, vol. 70(C).
    2. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    3. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    4. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    5. Chiu-Hsieh Hsu & Jeremy Taylor & Susan Murray, 2004. "Survival Analysis USing Auxiliary Variables Via Nonparametric Multiple Imputation," The University of Michigan Department of Biostatistics Working Paper Series 1026, Berkeley Electronic Press.
    6. Adrian D Vickers & Claire Ainsworth & Reema Mody & Annika Bergman & Caroline S Ling & Jasmina Medjedovic & Michael Smyth, 2016. "Systematic Review with Network Meta-Analysis: Comparative Efficacy of Biologics in the Treatment of Moderately to Severely Active Ulcerative Colitis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-21, October.
    7. Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
    8. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    9. repec:jss:jstsof:36:c01 is not listed on IDEAS
    10. Abadi, Fitsum & Gimenez, Olivier & Jakober, Hans & Stauber, Wolfgang & Arlettaz, Raphaël & Schaub, Michael, 2012. "Estimating the strength of density dependence in the presence of observation errors using integrated population models," Ecological Modelling, Elsevier, vol. 242(C), pages 1-9.
    11. Leon Chen, L. & Beck, Christian, 2008. "A superstatistical model of metastasis and cancer survival," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3162-3172.
    12. Będowska-Sójka, Barbara & Kliber, Agata, 2022. "Can cryptocurrencies hedge oil price fluctuations? A pandemic perspective," Energy Economics, Elsevier, vol. 115(C).
    13. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.
    14. Zhiguo Li & Kouros Owzar, 2016. "Fitting Cox Models with Doubly Censored Data Using Spline-Based Sieve Marginal Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 476-486, June.
    15. repec:jss:jstsof:40:i05 is not listed on IDEAS
    16. Chien-Lin Su & Russell J. Steele & Ian Shrier, 2021. "The semiparametric accelerated trend-renewal process for recurrent event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 357-387, July.
    17. Guy Abel & Jakub Bijak & Jonathan J. Forster & James Raymer & Peter W.F. Smith & Jackie S.T. Wong, 2013. "Integrating uncertainty in time series population forecasts: An illustration using a simple projection model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(43), pages 1187-1226.
    18. Yong Li & Zhongxin Ni & Jie Zhang, 2011. "An Efficient Stochastic Simulation Algorithm for Bayesian Unit Root Testing in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 37(3), pages 237-248, March.
    19. Juha Karvanen & Ari Rantanen & Lasse Luoma, 2013. "Survey data and Bayesian analysis: a cost-efficient way to estimate customer equity," Papers 1304.5380, arXiv.org, revised May 2014.
    20. Peijie Wang & Xingwei Tong & Jianguo Sun, 2018. "A semiparametric regression cure model for doubly censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 492-508, July.
    21. repec:jss:jstsof:37:i05 is not listed on IDEAS
    22. Selamawit Endale Gurmu, 2018. "Assessing Survival Time of Women with Cervical Cancer Using Various Parametric Frailty Models: A Case Study at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia," Annals of Data Science, Springer, vol. 5(4), pages 513-527, December.
    23. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:6-107:d:734438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.