IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i3p74-d245327.html
   My bibliography  Save this article

Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification

Author

Listed:
  • Prayut Jain

    (Department of Mathematics, Indian Institute of Science, Bengaluru 560012, India)

  • Shashi Jain

    (Department of Management Studies, Indian Institute of Science, Bengaluru 560012, India)

Abstract

The Hierarchical risk parity (HRP) approach of portfolio allocation, introduced by Lopez de Prado (2016), applies graph theory and machine learning to build a diversified portfolio. Like the traditional risk-based allocation methods, HRP is also a function of the estimate of the covariance matrix, however, it does not require its invertibility. In this paper, we first study the impact of covariance misspecification on the performance of the different allocation methods. Next, we study under an appropriate covariance forecast model whether the machine learning based HRP outperforms the traditional risk-based portfolios. For our analysis, we use the test for superior predictive ability on out-of-sample portfolio performance, to determine whether the observed excess performance is significant or if it occurred by chance. We find that when the covariance estimates are crude, inverse volatility weighted portfolios are more robust, followed by the machine learning-based portfolios. Minimum variance and maximum diversification are most sensitive to covariance misspecification. HRP follows the middle ground; it is less sensitive to covariance misspecification when compared with minimum variance or maximum diversification portfolio, while it is not as robust as the inverse volatility weighed portfolio. We also study the impact of the different rebalancing horizon and how the portfolios compare against a market-capitalization weighted portfolio.

Suggested Citation

  • Prayut Jain & Shashi Jain, 2019. "Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification," Risks, MDPI, vol. 7(3), pages 1-27, July.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:74-:d:245327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/3/74/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/3/74/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    2. Martin Martens, 2002. "Measuring and forecasting S&P 500 index‐futures volatility using high‐frequency data," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(6), pages 497-518, June.
    3. Bartosz Sawik, 2012. "Downside Risk Approach for Multi-Objective Portfolio Optimization," Operations Research Proceedings, in: Diethard Klatte & Hans-Jakob Lüthi & Karl Schmedders (ed.), Operations Research Proceedings 2011, edition 127, pages 191-196, Springer.
    4. B. Fastrich & S. Paterlini & P. Winker, 2015. "Constructing optimal sparse portfolios using regularization methods," Computational Management Science, Springer, vol. 12(3), pages 417-434, July.
    5. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    6. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    7. Philippe Bertrand & Vincent Lapointe, 2018. "Risk-based strategies: the social responsibility of investment universes does matter," Annals of Operations Research, Springer, vol. 262(2), pages 413-429, March.
    8. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    9. Goncalves, Silvia & de Jong, Robert, 2003. "Consistency of the stationary bootstrap under weak moment conditions," Economics Letters, Elsevier, vol. 81(2), pages 273-278, November.
    10. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    11. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    12. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    13. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    14. David Ardia & Guido Bolliger & Kris Boudt & Jean-Philippe Gagnon-Fleury, 2017. "The impact of covariance misspecification in risk-based portfolios," Annals of Operations Research, Springer, vol. 254(1), pages 1-16, July.
    15. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    16. Francesco Cesarone & Stefano Colucci, 2018. "Minimum risk versus capital and risk diversification strategies for portfolio construction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(2), pages 183-200, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    3. Sumanjay Dutta & Shashi Jain, 2023. "Precision versus Shrinkage: A Comparative Analysis of Covariance Estimation Methods for Portfolio Allocation," Papers 2305.11298, arXiv.org.
    4. Azra Zaimovic & Adna Omanovic & Almira Arnaut-Berilo, 2021. "How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Review of the Literature," JRFM, MDPI, vol. 14(11), pages 1-30, November.
    5. Susanna Levantesi & Giulia Zacchia, 2021. "Machine Learning and Financial Literacy: An Exploration of Factors Influencing Financial Knowledge in Italy," JRFM, MDPI, vol. 14(3), pages 1-21, March.
    6. Sven Husmann & Antoniya Shivarova & Rick Steinert, 2020. "Company classification using machine learning," Papers 2004.01496, arXiv.org, revised May 2020.
    7. Ben Amor, Souhir & Althof, Michael & Härdle, Wolfgang Karl, 2022. "Financial Risk Meter for emerging markets," Research in International Business and Finance, Elsevier, vol. 60(C).
    8. Illya Barziy & Marcin Chlebus, 2020. "HRP performance comparison in portfolio optimization under various codependence and distance metrics," Working Papers 2020-21, Faculty of Economic Sciences, University of Warsaw.
    9. Gilles Boevi Koumou, 2023. "Risk budgeting using a generalized diversity index," Journal of Asset Management, Palgrave Macmillan, vol. 24(6), pages 443-458, October.
    10. Burggraf, Tobias, 2021. "Beyond risk parity – A machine learning-based hierarchical risk parity approach on cryptocurrencies," Finance Research Letters, Elsevier, vol. 38(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    3. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    4. Massimiliano Caporin & Michael McAleer, 2010. "Ranking Multivariate GARCH Models by Problem Dimension," CARF F-Series CARF-F-219, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Michael Curran & Patrick O'Sullivan & Ryan Zalla, 2020. "Can Volatility Solve the Naive Portfolio Puzzle?," Papers 2005.03204, arXiv.org, revised Feb 2022.
    6. Manner, Hans & Reznikova, Olga, 2010. "Forecasting international stock market correlations: does anything beat a CCC?," Discussion Papers in Econometrics and Statistics 7/10, University of Cologne, Institute of Econometrics and Statistics.
    7. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    8. Laurent, Sébastien & Rombouts, Jeroen V.K. & Violante, Francesco, 2013. "On loss functions and ranking forecasting performances of multivariate volatility models," Journal of Econometrics, Elsevier, vol. 173(1), pages 1-10.
    9. Gilles Boevi Koumou, 2020. "Diversification and portfolio theory: a review," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 267-312, September.
    10. Kim, Jong-Min & Jung, Hojin, 2016. "Linear time-varying regression with Copula–DCC–GARCH models for volatility," Economics Letters, Elsevier, vol. 145(C), pages 262-265.
    11. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    12. Alexander, Carol & Han, Yang & Meng, Xiaochun, 2023. "Static and dynamic models for multivariate distribution forecasts: Proper scoring rule tests of factor-quantile versus multivariate GARCH models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1078-1096.
    13. Bouri, Elie & Gabauer, David & Gupta, Rangan & Tiwari, Aviral Kumar, 2021. "Volatility connectedness of major cryptocurrencies: The role of investor happiness," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
    14. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    15. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    16. Marchese, Malvina & Kyriakou, Ioannis & Tamvakis, Michael & Di Iorio, Francesca, 2020. "Forecasting crude oil and refined products volatilities and correlations: New evidence from fractionally integrated multivariate GARCH models," Energy Economics, Elsevier, vol. 88(C).
    17. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    18. Lucien Boulet, 2021. "Forecasting High-Dimensional Covariance Matrices of Asset Returns with Hybrid GARCH-LSTMs," Papers 2109.01044, arXiv.org.
    19. Shi, Yujie & Wang, Liming & Ke, Jian, 2021. "Does the US-China trade war affect co-movements between US and Chinese stock markets?," Research in International Business and Finance, Elsevier, vol. 58(C).
    20. Clements, A. & Silvennoinen, A., 2013. "Volatility timing: How best to forecast portfolio exposures," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 108-115.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:3:p:74-:d:245327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.