IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i7p766-d528675.html
   My bibliography  Save this article

Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study

Author

Listed:
  • Andrea Manni

    (Chemical Research 2000 S.r.l., Via S. Margherita di Belice 16, 00133 Rome, Italy
    Department of Chemical, Materials and Environmental Engineering (DICMA), “La Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Giovanna Saviano

    (Department of Chemical, Materials and Environmental Engineering (DICMA), “La Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Maria Grazia Bonelli

    (Programming and Grant Office Unit (UPGO), Italian National Research Council (CNR), Piazzale Aldo Moro 7, 00185 Rome, Italy
    InterUniversity Consortium Georesources Engineering (CINIGeo), Corso Vittorio Emanuele II 244, 00186 Rome, Italy)

Abstract

Artificial neural networks (ANNs) are a valid alternative predictive method to the traditional statistical techniques currently used in many research fields where a massive amount of data is challenging to manage. In environmental analysis, ANNs can analyze pollution sources in large areas, estimating difficult and expensive to detect contaminants from other easily measurable pollutants, especially for screening procedures. In this study, organic micropollutants have been predicted from heavy metals concentration using ANNs. Sampling was performed in an agricultural field where organic and inorganic contaminants concentrations are beyond the legal limits. A critical problem of a neural network design is to select its parametric topology, which can prejudice the reliability of the model. Therefore, it is very important to assess the performance of ANNs when applying different types of parameters of the net. In this work, based on Taguchi L 12 orthogonal array, turning experiments were conducted to identify the best parametric set of an ANNs design, considering different combinations of sample number, scaling, training rate, activation functions, number of hidden layers, and epochs. The composite desirability value for the multi-response variables has been obtained through the desirability function analysis (DFA). The parameters’ optimum levels have been identified using this methodology.

Suggested Citation

  • Andrea Manni & Giovanna Saviano & Maria Grazia Bonelli, 2021. "Optimization of the ANNs Predictive Capability Using the Taguchi Approach: A Case Study," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:766-:d:528675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/7/766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/7/766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elsy Gómez-Ramos & Francisco Venegas-Martínez, 2013. "A Review of Artificial Neural Networks: How Well Do They Perform in Forecasting Time Series?," Analítika, Analítika - Revista de Análisis Estadístico/Journal of Statistical Analysis, vol. 6(2), pages 7-15, Diciembre.
    2. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Bianco, Marcos & Camacho, Maximo & Perez Quiros, Gabriel, 2012. "Short-run forecasting of the euro-dollar exchange rate with economic fundamentals," Journal of International Money and Finance, Elsevier, vol. 31(2), pages 377-396.
    2. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    3. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    4. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    5. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    6. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Forecasting the oil–gasoline price relationship: Do asymmetries help?," Energy Economics, Elsevier, vol. 46(S1), pages 44-56.
    7. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    8. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    9. Dick, Christian D. & MacDonald, Ronald & Menkhoff, Lukas, 2015. "Exchange rate forecasts and expected fundamentals," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 235-256.
    10. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    11. Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
    12. Hui Guo, 2006. "On the Out-of-Sample Predictability of Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 79(2), pages 645-670, March.
    13. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    14. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    15. Yin-Wong Cheung & Menzie D. Chinn & Antonio I. Garcia Pascual, 2003. "What Do We Know about Recent Exchange Rate Models? In-Sample Fit and Out-of-Sample Performance Evaluated," CESifo Working Paper Series 902, CESifo.
    16. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    17. Dewachter, Hans, 2001. "Can Markov switching models replicate chartist profits in the foreign exchange market?," Journal of International Money and Finance, Elsevier, vol. 20(1), pages 25-41, February.
    18. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.
    19. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    20. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:7:p:766-:d:528675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.