IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i9p1385-d1387442.html
   My bibliography  Save this article

A Modified Depolarization Approach for Efficient Quantum Machine Learning

Author

Listed:
  • Bikram Khanal

    (School of Engineering and Computer Science, Department of Computer Science, Baylor University, Waco, TX 76798, USA)

  • Pablo Rivas

    (School of Engineering and Computer Science, Department of Computer Science, Baylor University, Waco, TX 76798, USA)

Abstract

Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era.

Suggested Citation

  • Bikram Khanal & Pablo Rivas, 2024. "A Modified Depolarization Approach for Efficient Quantum Machine Learning," Mathematics, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1385-:d:1387442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/9/1385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/9/1385/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:9:p:1385-:d:1387442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.