IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2467-d1157319.html
   My bibliography  Save this article

A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks

Author

Listed:
  • Yuling Huang

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macao, China)

  • Kai Cui

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macao, China)

  • Yunlin Song

    (Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao, China)

  • Zongren Chen

    (School of Computer Science and Engineering, Macau University of Science and Technology, Macao, China)

Abstract

Advancements in machine learning have led to an increased interest in applying deep reinforcement learning techniques to investment decision-making problems. Despite this, existing approaches often rely solely on single-scaling daily data, neglecting the importance of multi-scaling information, such as weekly or monthly data, in decision-making processes. To address this limitation, a multi-scaling convolutional neural network for reinforcement learning-based stock trading, termed multi-scaling convolutional neural network SARSA (state, action, reward, state, action), is proposed. Our method utilizes a multi-scaling convolutional neural network to obtain multi-scaling features of daily and weekly financial data automatically. This involves using a convolutional neural network with several filter sizes to perform a multi-scaling extraction of temporal features. Multiple-scaling feature mining allows agents to operate over longer time scaling, identifying low stock positions on the weekly line and avoiding daily fluctuations during continuous declines. This mimics the human approach of considering information at varying temporal and spatial scaling during stock trading. We further enhance the network’s robustness by adding an average pooling layer to the backbone convolutional neural network, reducing overfitting. State, action, reward, state, action, as an on-policy reinforcement learning method, generates dynamic trading strategies that combine multi-scaling information across different time scaling, while avoiding dangerous strategies. We evaluate the effectiveness of our proposed method on four real-world datasets (Dow Jones, NASDAQ, General Electric, and AAPLE) spanning from 1 January 2007 to 31 December 2020, and demonstrate its superior profits compared to several baseline methods. In addition, we perform various comparative and ablation tests in order to demonstrate the superiority of the proposed network architecture. Through these experiments, our proposed multi-scaling module yields better results compared to the single-scaling module.

Suggested Citation

  • Yuling Huang & Kai Cui & Yunlin Song & Zongren Chen, 2023. "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-19, May.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2467-:d:1157319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehran Taghian & Ahmad Asadi & Reza Safabakhsh, 2021. "A Reinforcement Learning Based Encoder-Decoder Framework for Learning Stock Trading Rules," Papers 2101.03867, arXiv.org.
    2. Marco Corazza & Giovanni Fasano & Riccardo Gusso & Raffaele Pesenti, 2019. "A comparison among Reinforcement Learning algorithms in financial trading systems," Working Papers 2019:33, Department of Economics, University of Venice "Ca' Foscari".
    3. Marco Corazza & Andrea Sangalli, 2015. "Q-Learning and SARSA: a comparison between two intelligent stochastic control approaches for financial trading," Working Papers 2015:15, Department of Economics, University of Venice "Ca' Foscari", revised 2015.
    4. Souradeep Chakraborty, 2019. "Capturing Financial markets to apply Deep Reinforcement Learning," Papers 1907.04373, arXiv.org, revised Dec 2019.
    5. Caiyu Jiang & Jianhua Wang, 2022. "A Portfolio Model with Risk Control Policy Based on Deep Reinforcement Learning," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    6. Poterba, James M. & Summers, Lawrence H., 1988. "Mean reversion in stock prices : Evidence and Implications," Journal of Financial Economics, Elsevier, vol. 22(1), pages 27-59, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shyh-Wei Chen, 2008. "Non-stationarity and Non-linearity in Stock Prices: Evidence from the OECD Countries," Economics Bulletin, AccessEcon, vol. 3(11), pages 1-11.
    2. Neely, Christopher J. & Weller, Paul, 2000. "Predictability in International Asset Returns: A Reexamination," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(4), pages 601-620, December.
    3. Mohamed Es-Sanoun & Jude Gohou & Mounir Benboubker, 2023. "Testing of Herd Behavior In african Stock Markets During COVID-19 Pandemic [Essai de vérification du comportement mimétique dans les marchés boursiers africains au cours de la crise de covid-19]," Post-Print hal-04144289, HAL.
    4. John Sabelhaus, 2005. "Alternative Methods for Projecting Equity Returns: Implications for Evaluating Social Security Reform Proposals," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 8(1), pages 43-63, March.
    5. Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
    6. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    7. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    8. Dai, R., 2010. "Essays on pension finance and dynamic asset allocation," Other publications TiSEM 72fdbf1a-5a77-410d-bb4e-9, Tilburg University, School of Economics and Management.
    9. Prat, Georges, 2013. "Equity risk premium and time horizon: What do the U.S. secular data say?," Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
    10. Balvers, Ronald J. & Mitchell, Douglas W., 2000. "Efficient gradualism in intertemporal portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 21-38, January.
    11. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    12. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    13. William A. Brock & Blake LeBaron, 1990. "Liquidity Constraints in Production-Based Asset-Pricing Models," NBER Chapters, in: Asymmetric Information, Corporate Finance, and Investment, pages 231-256, National Bureau of Economic Research, Inc.
    14. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    15. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    17. Ka Po Kung, 2022. "Efficiency of the Stock Markets after the 2008 Financial Crisis: Evidence from the Four Asian Dragons," Eurasian Journal of Business and Management, Eurasian Publications, vol. 10(2), pages 101-115.
    18. Koutmos, Gregory, 1998. "Asymmetries in the Conditional Mean and the Conditional Variance: Evidence From Nine Stock Markets," Journal of Economics and Business, Elsevier, vol. 50(3), pages 277-290, May.
    19. Seok Young Hong & Oliver Linton & Hui Jun Zhang, 2014. "Multivariate variance ratio statistics," CeMMAP working papers 29/14, Institute for Fiscal Studies.
    20. Ravi Kashyap, 2016. "Solving the Equity Risk Premium Puzzle and Inching Towards a Theory of Everything," Papers 1604.04872, arXiv.org, revised Sep 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2467-:d:1157319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.