IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v10y2022i3p54-d861100.html
   My bibliography  Save this article

A Deep Learning Approach to Dynamic Interbank Network Link Prediction

Author

Listed:
  • Haici Zhang

    (The Institute for Financial Services Analytics, University of Delaware, Newark, DE 19716, USA)

Abstract

Lehman Brothers’ failure in 2008 demonstrated the importance of understanding interconnectedness in interbank networks. The interbank market plays a significant role in facilitating market liquidity and providing short-term funding for each other to smooth liquidity shortages. Knowing the trading relationship could also help understand risk contagion among banks. Therefore, future lending relationship prediction is important to understand the dynamic evolution of interbank networks. To achieve the goal, we apply a deep learning framework model of interbank lending to an electronic trading interbank network for temporal trading relationship prediction. There are two important components of the model, which are the Graph convolutional network (GCN) and the Long short-term memory (LSTM) model. The GCN and LSTM components together capture the spatial–temporal information of the dynamic network snapshots. Compared with the Discrete autoregressive model and Dynamic latent space model, our proposed model achieves better performance in both the precrisis and the crisis period.

Suggested Citation

  • Haici Zhang, 2022. "A Deep Learning Approach to Dynamic Interbank Network Link Prediction," IJFS, MDPI, vol. 10(3), pages 1-16, July.
  • Handle: RePEc:gam:jijfss:v:10:y:2022:i:3:p:54-:d:861100
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/10/3/54/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/10/3/54/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    2. Upper, Christian, 2011. "Simulation methods to assess the danger of contagion in interbank markets," Journal of Financial Stability, Elsevier, vol. 7(3), pages 111-125, August.
    3. Bräuning, Falk & Koopman, Siem Jan, 2020. "The dynamic factor network model with an application to international trade," Journal of Econometrics, Elsevier, vol. 216(2), pages 494-515.
    4. Cocco, João F. & Gomes, Francisco J. & Martins, Nuno C., 2009. "Lending relationships in the interbank market," Journal of Financial Intermediation, Elsevier, vol. 18(1), pages 24-48, January.
    5. Leventides, John & Loukaki, Kalliopi & Papavassiliou, Vassilios G., 2019. "Simulating financial contagion dynamics in random interbank networks," Journal of Economic Behavior & Organization, Elsevier, vol. 158(C), pages 500-525.
    6. Daniel K. Sewell & Yuguo Chen, 2015. "Latent Space Models for Dynamic Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1646-1657, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morteza Alaeddini & Philippe Madiès & Paul J. Reaidy & Julie Dugdale, 2023. "Interbank money market concerns and actors’ strategies—A systematic review of 21st century literature," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 573-654, April.
    2. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    3. Kanno, Masayasu, 2020. "Interconnectedness and systemic risk in the US CDS market," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    4. Aldasoro, Iñaki & Hüser, Anne-Caroline & Kok, Christoffer, 2022. "Contagion accounting in stress-testing," Journal of Economic Dynamics and Control, Elsevier, vol. 137(C).
    5. Jose Fique, 2015. "A Microfounded Design of Interconnectedness-Based Macroprudential Regulation," CAEPR Working Papers 2015-008, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    6. in 't Veld, Daan & van der Leij, Marco & Hommes, Cars, 2020. "The formation of a core-periphery structure in heterogeneous financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 119(C).
    7. Zongwu Cai & Xiyuan Liu, 2020. "A Functional-Coefficient VAR Model for Dynamic Quantiles with Constructing Financial Network," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202017, University of Kansas, Department of Economics, revised Oct 2020.
    8. Iñaki Aldasoro & Anne-Caroline Hüser & Christoffer Kok Sørensen, 2020. "Contagion Accounting," BIS Working Papers 908, Bank for International Settlements.
    9. I�aki Aldasoro & Ignazio Angeloni, 2015. "Input-output-based measures of systemic importance," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 589-606, April.
    10. Valentina Macchiati & Giuseppe Brandi & Tiziana Di Matteo & Daniela Paolotti & Guido Caldarelli & Giulio Cimini, 2022. "Systemic liquidity contagion in the European interbank market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(2), pages 443-474, April.
    11. Siklos, Pierre L. & Stefan, Martin, 2021. "Exchange rate shocks in multicurrency interbank markets," Journal of Financial Stability, Elsevier, vol. 55(C).
    12. Andre R. Neveu, 2018. "A survey of network-based analysis and systemic risk measurement," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 241-281, July.
    13. Jose Fique, 2016. "A Microfounded Design of Interconnectedness-Based Macroprudential Policy," Staff Working Papers 16-6, Bank of Canada.
    14. Kanno, Masayasu, 2015. "Assessing systemic risk using interbank exposures in the global banking system," Journal of Financial Stability, Elsevier, vol. 20(C), pages 105-130.
    15. Kartik Anand & Ben Craig & Goetz von Peter, 2015. "Filling in the blanks: network structure and interbank contagion," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 625-636, April.
    16. Batiz-Zuk, Enrique & López-Gallo, Fabrizio & Martínez-Jaramillo, Serafín & Solórzano-Margain, Juan Pablo, 2016. "Calibrating limits for large interbank exposures from a system-wide perspective," Journal of Financial Stability, Elsevier, vol. 27(C), pages 198-216.
    17. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    18. Kanno, Masayasu, 2016. "The network structure and systemic risk in the global non-life insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 38-53.
    19. Montagna, Mattia & Lux, Thomas, 2013. "Hubs and resilience: Towards more realistic models of the interbank markets," Kiel Working Papers 1826, Kiel Institute for the World Economy (IfW Kiel).
    20. Pablo Rovira Kaltwasser & Alessandro Spelta, 2019. "Identifying systemically important financial institutions: a network approach," Computational Management Science, Springer, vol. 16(1), pages 155-185, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:10:y:2022:i:3:p:54-:d:861100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.