IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2156-d1387157.html
   My bibliography  Save this article

Optimal Scheduling of Off-Site Industrial Production in the Context of Distributed Photovoltaics

Author

Listed:
  • Sizhe Xie

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Yao Li

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Peng Wang

    (Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

Abstract

A reasonable allocation of production schedules and savings in overall electricity costs are crucial for large manufacturing conglomerates. In this study, we develop an optimization model of off-site industrial production scheduling to address the problems of high electricity costs due to the irrational allocation of production schedules on the demand side of China’s power supply, and the difficulty in promoting industrial and commercial distributed photovoltaic (PV) projects in China. The model makes full use of the conditions of different PV resources and variations in electricity prices in different places to optimize the scheduling of industrial production in various locations. The model is embedded with two sub-models, i.e., an electricity price prediction model and a distributed photovoltaic power cost model to complete the model parameters, in which the electricity price prediction model utilizes a Long Short-Term Memory (LSTM) neural network. Then, the particle swarm optimization algorithm is used to solve the optimization model. Finally, the production data of two off-site pharmaceutical factories belonging to the same large group of enterprises are substituted into the model for example analysis, and it is concluded that the optimization model can significantly reduce the electricity consumption costs of the enterprises by about 7.9%. This verifies the effectiveness of the optimization model established in this paper in reducing the cost of electricity consumption on the demand side.

Suggested Citation

  • Sizhe Xie & Yao Li & Peng Wang, 2024. "Optimal Scheduling of Off-Site Industrial Production in the Context of Distributed Photovoltaics," Energies, MDPI, vol. 17(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2156-:d:1387157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue, Liya & Liu, Junling & Lin, Xiaojing & Li, Mengyue & Kobashi, Takuro, 2024. "Assessing urban rooftop PV economics for regional deployment by integrating local socioeconomic, technological, and policy conditions," Applied Energy, Elsevier, vol. 353(PA).
    2. Schwidtal, Jan Marc & Agostini, Marco & Coppo, Massimiliano & Bignucolo, Fabio & Lorenzoni, Arturo, 2023. "Optimized operation of distributed energy resources: The opportunities of value stacking for Power-to-Gas aggregated with PV," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohuan Xie & Haifeng Deng & Shengyuan Li & Zhonghua Gou, 2024. "Optimizing Land Use for Carbon Neutrality: Integrating Photovoltaic Development in Lingbao, Henan Province," Land, MDPI, vol. 13(1), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2156-:d:1387157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.