IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2098-d1384575.html
   My bibliography  Save this article

Hydrothermal Co-Liquefaction of Food and Plastic Waste for Biocrude Production

Author

Listed:
  • Silvan Feuerbach

    (AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

  • Saqib Sohail Toor

    (AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

  • Paula A. Costa

    (LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal)

  • Filipe Paradela

    (LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal)

  • Paula A.A.S. Marques

    (LNEG—Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal)

  • Daniele Castello

    (AAU Energy, Aalborg University, Pontoppidanstræde 111, 9220 Aalborg, Denmark)

Abstract

In this study, hydrothermal co-liquefaction of restaurant waste for biocrude production was conducted. The feedstock was resembled using the organic fraction of restaurant waste and low-density polyethylene, polypropylene, polystyrene, and polyethylene terephthalate, four plastic types commonly present in municipal solid waste. Using design of experiment and a face-centered central composite design, three factors (feedstock plastic fraction, temperature, time) were varied at three levels each: feedstock plastic fraction (0, 0.25, 0.5), temperature (290 °C, 330 °C, 370 °C), and reaction time (0 min, 30 min, 60 min). The literature reports positive synergistic interactions in hydrothermal co-liquefaction of biomass and plastics; however, in this work, only negative synergistic interactions could be observed. A reason could be the high thermal stability of produced fatty acids that give little room for interactions with plastics. At the same time, mass might transfer to other product phases.

Suggested Citation

  • Silvan Feuerbach & Saqib Sohail Toor & Paula A. Costa & Filipe Paradela & Paula A.A.S. Marques & Daniele Castello, 2024. "Hydrothermal Co-Liquefaction of Food and Plastic Waste for Biocrude Production," Energies, MDPI, vol. 17(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2098-:d:1384575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seshasayee, Mahadevan Subramanya & Savage, Phillip E., 2020. "Oil from plastic via hydrothermal liquefaction: Production and characterization," Applied Energy, Elsevier, vol. 278(C).
    2. Lenth, Russell V., 2009. "Response-Surface Methods in R, Using rsm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Brilli & E. Lugato & M. Moriondo & B. Gioli & P. Toscano & A. Zaldei & L. Leolini & C. Cantini & G. Caruso & R. Gucci & P. Merante & C. Dibari & R. Ferrise & M. Bindi & S. Costafreda-Aumedes, 2019. "Carbon sequestration capacity and productivity responses of Mediterranean olive groves under future climates and management options," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 467-491, March.
    2. Han-Jang No & Dai-Won Kim & Jung-Suk Yu, 2017. "Do Reserve Prices Yield Reference Price Effects in Korean Court Auctions of Residential Real Estate?," International Real Estate Review, Global Social Science Institute, vol. 20(1), pages 75-104.
    3. Fondevilla, Cristian & Àngels Colomer, M. & Fillat, Federico & Tappeiner, Ulrike, 2016. "Using a new PDP modelling approach for land-use and land-cover change predictions: A case study in the Stubai Valley (Central Alps)," Ecological Modelling, Elsevier, vol. 322(C), pages 101-114.
    4. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.
    5. Ankit Mathanker & Snehlata Das & Deepak Pudasainee & Monir Khan & Amit Kumar & Rajender Gupta, 2021. "A Review of Hydrothermal Liquefaction of Biomass for Biofuels Production with a Special Focus on the Effect of Process Parameters, Co-Solvents, and Extraction Solvents," Energies, MDPI, vol. 14(16), pages 1-60, August.
    6. Sogand Musivand & Maria Paola Bracciale & Martina Damizia & Paolo De Filippis & Benedetta de Caprariis, 2023. "Viable Recycling of Polystyrene via Hydrothermal Liquefaction and Pyrolysis," Energies, MDPI, vol. 16(13), pages 1-13, June.
    7. Gluth, A. & Xu, Z. & Fifield, L.S. & Yang, B., 2022. "Advancing biological processing for valorization of plastic wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    8. Yu, Jie & Lin, Xiaoyu & Huang, Jingchen & Ye, Wangfang & Lan, Qian & Du, Shaorong & Liu, Zilin & Wu, Yijing & Zhao, Zeyuan & Xu, Xin & Yang, Guifang & Changotra, Rahil & Hu, Yulin & Wu, Yulong & Yan, , 2023. "Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques," Renewable Energy, Elsevier, vol. 218(C).
    9. Giulia Costa & Alessandra Polettini & Raffaella Pomi & Alessio Stramazzo & Daniela Zingaretti, 2017. "Energetic assessment of CO 2 sequestration through slurry carbonation of steel slag: a factorial study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 530-541, June.
    10. Al-Mudhafar, Watheq J. & Rao, Dandina N & Srinivasan, Sanjay, 2019. "Advanced ML and AI Approaches for Proxy-based Optimization of CO2-Enhanced Oil Recovery in Heterogeneous Clastic Reservoirs," Earth Arxiv wsu6g, Center for Open Science.
    11. Gansterer, Margaretha & Almeder, Christian & Hartl, Richard F., 2014. "Simulation-based optimization methods for setting production planning parameters," International Journal of Production Economics, Elsevier, vol. 151(C), pages 206-213.
    12. Aoife L. McCarthy & Yvonne C. O'Callaghan & Nora M. O'Brien, 2013. "Protein Hydrolysates from Agricultural Crops—Bioactivity and Potential for Functional Food Development," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    13. Kshirsagar, Milind P. & Kalamkar, Vilas R., 2020. "Application of multi-response robust parameter design for performance optimization of a hybrid draft biomass cook stove," Renewable Energy, Elsevier, vol. 153(C), pages 1127-1139.
    14. Angelina Roche, 2018. "Local optimization of black-box functions with high or infinite-dimensional inputs: application to nuclear safety," Computational Statistics, Springer, vol. 33(1), pages 467-485, March.
    15. Yin Ting Chu & Jianzhao Zhou & Yuan Wang & Yue Liu & Jingzheng Ren, 2023. "Current State, Development and Future Directions of Medical Waste Valorization," Energies, MDPI, vol. 16(3), pages 1-28, January.
    16. Venturelli, Matteo & Falletta, Ermelinda & Pirola, Carlo & Ferrari, Federico & Milani, Massimo & Montorsi, Luca, 2022. "Experimental evaluation of the pyrolysis of plastic residues and waste tires," Applied Energy, Elsevier, vol. 323(C).
    17. Lund, Henrik & Skov, Iva Ridjan & Thellufsen, Jakob Zinck & Sorknæs, Peter & Korberg, Andrei David & Chang, Miguel & Mathiesen, Brian Vad & Kany, Mikkel Strunge, 2022. "The role of sustainable bioenergy in a fully decarbonised society," Renewable Energy, Elsevier, vol. 196(C), pages 195-203.
    18. Grömping, Ulrike, 2014. "R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level Designs," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i01).
    19. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2022. "Kinetics and characteristics of activator-assisted pyrolysis of municipal waste plastic and chlorine removal using hot filter filled with absorbents," Energy, Elsevier, vol. 238(PB).
    20. Marina Corral Bobadilla & Rubén Lostado Lorza & Rubén Escribano García & Fátima Somovilla Gómez & Eliseo P. Vergara González, 2017. "An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions," Energies, MDPI, vol. 10(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2098-:d:1384575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.