IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2087-d1384105.html
   My bibliography  Save this article

Process Optimization of Pellet Manufacturing from Mixed Materials in Ultrasonic Vibration-Assisted Pelleting

Author

Listed:
  • Wentao Li

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Rongwei Yu

    (College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China)

  • Lina Luo

    (Department of New Energy Science and Engineering, School of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Hongying Shi

    (Heilongjiang Boneng Ecological Environmental Protection Co., Ltd., Harbin 150028, China)

Abstract

Achieving carbon neutrality and alleviating the rural energy predicament are crucial aspects in rural areas, particularly in the severe cold regions of northeast China. Pellets serve as clean, renewable energy sources and are ideal alternative fuels. This study investigated the influencing factors and effects of mixed raw materials in ultrasonic vibration-assisted pelleting (UV-A pelleting). Rice straw and corn stover were mixed to produce pellets, and a central composite rotatable design (CCRD) was conducted to analyze the variables and their interactions on pellet density and durability. Mathematical regression models for pellet density and durability were established and then validated through ANOVA analysis. The results showed that all variables significantly affected the density and durability of pellets. The mixing ratio had a greater impact on pellet durability compared to density due to differences in ingredients. The optimal combination of process parameters included a mixing ratio of 25%, molding pressure of 4 MPa, pelleting time of 37 s, and ultrasonic power output at 200 W, resulting in a pellet density of 1301.18 kg/m 3 with a durability reaching 94.26%. The desirability value (0.997) under these optimal conditions confirmed the validity of the models; further experiments also verified their effectiveness. The combustion of the optimized pellet was analyzed using thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis in an air atmosphere. Four combustion stages and ignition temperature were provided.

Suggested Citation

  • Wentao Li & Rongwei Yu & Lina Luo & Hongying Shi, 2024. "Process Optimization of Pellet Manufacturing from Mixed Materials in Ultrasonic Vibration-Assisted Pelleting," Energies, MDPI, vol. 17(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2087-:d:1384105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Li, Yuzhou & Ning, Fuda & Cong, Weilong & Zhang, Meng & Tang, Yongjun, 2016. "Investigating pellet charring and temperature in ultrasonic vibration-assisted pelleting of wheat straw for cellulosic biofuel manufacturing," Renewable Energy, Elsevier, vol. 92(C), pages 312-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    2. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    3. Bogdan Saletnik & Marcin Fiedur & Radosław Kwarciany & Grzegorz Zaguła & Marcin Bajcar, 2024. "Pyrolysis as a Method for Processing of Waste from Production of Cultivated Tobacco ( Nicotiana tabacum L.)," Sustainability, MDPI, vol. 16(7), pages 1-15, March.
    4. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    5. San Miguel, G. & Sánchez, F. & Pérez, A. & Velasco, L., 2022. "One-step torrefaction and densification of woody and herbaceous biomass feedstocks," Renewable Energy, Elsevier, vol. 195(C), pages 825-840.
    6. Dumitru Peni & Mariusz Jerzy Stolarski & Anna Bordiean & Michał Krzyżaniak & Marcin Dębowski, 2020. "Silphium perfoliatum —A Herbaceous Crop with Increased Interest in Recent Years for Multi-Purpose Use," Agriculture, MDPI, vol. 10(12), pages 1-22, December.
    7. Zongyou Ben & Xubo Zhang & Duoxing Yang & Kunjie Chen, 2023. "An Experimental and Numerical Study for Discrete Element Model Parameters Calibration: Gluten Pellets," Agriculture, MDPI, vol. 13(4), pages 1-18, March.
    8. Zhang, Qi & Shi, Zhenzhen & Zhang, Pengfei & Li, Zhichao & Jaberi-Douraki, Majid, 2017. "Predictive temperature modeling and experimental investigation of ultrasonic vibration-assisted pelleting of wheat straw," Applied Energy, Elsevier, vol. 205(C), pages 511-528.
    9. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    10. Okey Francis Obi & Ralf Pecenka, 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size," Energies, MDPI, vol. 16(3), pages 1-14, February.
    11. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    12. Xinyu Gao & Ze Li & Jiabang Yu & Jiayi Gao & Xiaohu Yang & Bengt Sundén, 2023. "Thermo-Economic Performance Analysis of Modified Latent Heat Storage System for Residential Heating," Energies, MDPI, vol. 16(19), pages 1-19, September.
    13. Bogdan Saletnik & Marcin Bajcar & Aneta Saletnik & Grzegorz Zaguła & Czesław Puchalski, 2021. "Effect of the Pyrolysis Process Applied to Waste Branches Biomass from Fruit Trees on the Calorific Value of the Biochar and Dust Explosivity," Energies, MDPI, vol. 14(16), pages 1-18, August.
    14. Weronika Tulej & Szymon Głowacki & Andrzej Bryś & Mariusz Sojak & Piotr Wichowski & Krzysztof Górnicki, 2021. "Research on Determination of Water Diffusion Coefficient in Single Particles of Wood Biomass Dried Using Convective Drying Method," Energies, MDPI, vol. 14(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2087-:d:1384105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.