IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2077-d1383895.html
   My bibliography  Save this article

Environmental Impact of Enhanced Geothermal Systems with Supercritical Carbon Dioxide: A Comparative Life Cycle Analysis of Polish and Norwegian Cases

Author

Listed:
  • Magdalena Strojny

    (Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland)

  • Paweł Gładysz

    (Faculty of Energy and Fuels, AGH University of Krakow, 30-059 Kraków, Poland)

  • Trond Andresen

    (SINTEF Energy Research, 7034 Trondheim, Norway)

  • Leszek Pająk

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059 Kraków, Poland)

  • Magdalena Starczewska

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059 Kraków, Poland)

  • Anna Sowiżdżał

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, 30-059 Kraków, Poland)

Abstract

Low-carbon electricity and heat production is essential for keeping the decarbonization targets and climate mitigation goals. Thus, an accurate understanding of the potential environmental impacts constitutes a key aspect not only for the reduction in greenhouse gas emissions but also for other environmental categories. Life cycle assessment allows us to conduct an overall evaluation of a given process or system through its whole lifetime across various environmental indicators. This study focused on construction, operation and maintenance, and end-of-life phases, which were analyzed based on the ReCiPe 2016 method. Within this work, authors assessed the environmental performance of one of the renewable energy sources—Enhanced Geothermal Systems, which utilize supercritical carbon dioxide as a working fluid to produce electricity and heat. Heat for the process is extracted from hot, dry rocks, typically located at depths of approximately 4–5 km, and requires appropriate stimulation to enable fluid flow. Consequently, drilling and site preparation entail significant energy and material inputs. This stage, based on conducted calculations, exhibits the highest global warming potential, with values between 5.2 and 30.1 kgCO 2 eq/MWh el , corresponding to approximately 65%, 86%, and 94% in terms of overall impacts for ecosystems, human health, and resources categories, respectively. Moreover, the study authors compared the EGS impacts for the Polish and Norwegian conditions. Obtained results indicated that due to much higher electricity output from the Norwegian plant, which is sited offshore, the environmental influence remains the lowest, at a level of 11.9 kgCO 2 eq/MWh el . Polish cases range between 38.7 and 54.1 kgCO 2 eq/MWh el of global warming potential in terms of electricity production. Regarding power generation only, the impacts in the case of the Norwegian facility are two to five times lower than for the installation in the Polish conditions.

Suggested Citation

  • Magdalena Strojny & Paweł Gładysz & Trond Andresen & Leszek Pająk & Magdalena Starczewska & Anna Sowiżdżał, 2024. "Environmental Impact of Enhanced Geothermal Systems with Supercritical Carbon Dioxide: A Comparative Life Cycle Analysis of Polish and Norwegian Cases," Energies, MDPI, vol. 17(9), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2077-:d:1383895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lacirignola, Martino & Blanc, Isabelle, 2013. "Environmental analysis of practical design options for enhanced geothermal systems (EGS) through life-cycle assessment," Renewable Energy, Elsevier, vol. 50(C), pages 901-914.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    2. Trumpy, Eugenio & Bertani, Ruggero & Manzella, Adele & Sander, Marietta, 2015. "The web-oriented framework of the world geothermal production database: A business intelligence platform for wide data distribution and analysis," Renewable Energy, Elsevier, vol. 74(C), pages 379-389.
    3. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    4. Yang, Ruiyue & Hong, Chunyang & Liu, Wei & Wu, Xiaoguang & Wang, Tianyu & Huang, Zhongwei, 2021. "Non-contaminating cryogenic fluid access to high-temperature resources: Liquid nitrogen fracturing in a lab-scale Enhanced Geothermal System," Renewable Energy, Elsevier, vol. 165(P1), pages 125-138.
    5. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Arnaud Mignan & Marco Broccardo & Ziqi Wang, 2021. "Comprehensive Survey of Seismic Hazard at Geothermal Sites by a Meta-Analysis of the Underground Feedback Activation Parameter a fb," Energies, MDPI, vol. 14(23), pages 1-15, November.
    7. Giambattista Guidi & Anna Carmela Violante & Simona De Iuliis, 2023. "Environmental Impact of Electricity Generation Technologies: A Comparison between Conventional, Nuclear, and Renewable Technologies," Energies, MDPI, vol. 16(23), pages 1-33, November.
    8. Liu, Wen & Ramirez, Andrea, 2017. "State of the art review of the environmental assessment and risks of underground geo-energy resources exploitation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 628-644.
    9. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    10. Chen, Jiliang & Jiang, Fangming, 2015. "Designing multi-well layout for enhanced geothermal system to better exploit hot dry rock geothermal energy," Renewable Energy, Elsevier, vol. 74(C), pages 37-48.
    11. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    13. Magdalena Tyszer & Wiesław Bujakowski & Barbara Tomaszewska & Bogusław Bielec, 2020. "Geothermal Water Management Using the Example of the Polish Lowland (Poland)—Key Aspects Related to Co-Management of Drinking and Geothermal Water," Energies, MDPI, vol. 13(10), pages 1-13, May.
    14. Maria Milousi & Athanasios Pappas & Andreas P. Vouros & Giouli Mihalakakou & Manolis Souliotis & Spiros Papaefthimiou, 2022. "Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment," Energies, MDPI, vol. 15(15), pages 1-30, August.
    15. Ma, Weiwu & Wang, Yadan & Wu, Xiaotian & Liu, Gang, 2020. "Hot dry rock (HDR) hydraulic fracturing propagation and impact factors assessment via sensitivity indicator," Renewable Energy, Elsevier, vol. 146(C), pages 2716-2723.
    16. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.
    17. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    18. Gao, Xiang & Li, Tailu & Meng, Nan & Gao, Haiyang & Li, Xuelong & Gao, Ruizhao & Wang, Zeyu & Wang, Jingyi, 2023. "Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy's law combined with power generation from hot dry rock," Renewable Energy, Elsevier, vol. 206(C), pages 428-440.
    19. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2077-:d:1383895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.