IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2340-d1393427.html
   My bibliography  Save this article

LSTM-Autoencoder Deep Learning Model for Anomaly Detection in Electric Motor

Author

Listed:
  • Fadhila Lachekhab

    (Applied Automation Laboratory, Faculty of Hydrocarbon & Chemistry, University M’Hamed Bougara, Boumerdes 35000, Algeria)

  • Messouada Benzaoui

    (Applied Automation Laboratory, Institute of Electrical and Electronic Engineering, University M’Hamed Bougara, Boumerdes 35000, Algeria)

  • Sid Ahmed Tadjer

    (Electrification of Industrial Enterprises Laboratory, Faculty of Hydrocarbon & Chemistry, University M’Hamed Bougara, Boumerdes 35000, Algeria)

  • Abdelkrim Bensmaine

    (Applied Automation Laboratory, Faculty of Hydrocarbon & Chemistry, University M’Hamed Bougara, Boumerdes 35000, Algeria)

  • Hichem Hamma

    (Applied Automation Laboratory, Faculty of Hydrocarbon & Chemistry, University M’Hamed Bougara, Boumerdes 35000, Algeria)

Abstract

Anomaly detection is the process of detecting unusual or unforeseen patterns or events in data. Many factors, such as malfunctioning hardware, malevolent activities, or modifications to the data’s underlying distribution, might cause anomalies. One of the key factors in anomaly detection is balancing the trade-off between sensitivity and specificity. Balancing these trade-offs requires careful tuning of the anomaly detection algorithm and consideration of the specific domain and application. Deep learning techniques’ applications, such as LSTMs (long short-term memory algorithms), which are autoencoders for detecting an anomaly, have garnered increasing attention in recent years. The main goal of this work was to develop an anomaly detection solution for an electrical machine using an LSTM-autoencoder deep learning model. The work focused on detecting anomalies in an electrical motor’s variation vibrations in three axes: axial (X), radial (Y), and tangential (Z), which are indicative of potential faults or failures. The presented model is a combination of the two architectures; LSTM layers were added to the autoencoder in order to leverage the LSTM capacity for handling large amounts of temporal data. To prove the LSTM efficiency, we will create a regular autoencoder model using the Python programming language and the TensorFlow machine learning framework, and compare its performance with our main LSTM-based autoencoder model. The two models will be trained on the same database, and evaluated on three primary points: training time, loss function, and MSE anomalies. Based on the obtained results, it is clear that the LSTM-autoencoder shows significantly smaller loss values and MSE anomalies compared to the regular autoencoder. On the other hand, the regular autoencoder performs better than the LSTM, comparing the training time. It appears then, that the LSTM-autoencoder presents a superior performance although it was slower than the standard autoencoder due to the complexity of the added LSTM layers.

Suggested Citation

  • Fadhila Lachekhab & Messouada Benzaoui & Sid Ahmed Tadjer & Abdelkrim Bensmaine & Hichem Hamma, 2024. "LSTM-Autoencoder Deep Learning Model for Anomaly Detection in Electric Motor," Energies, MDPI, vol. 17(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2340-:d:1393427
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
    2. Sunil Saumya & Jyoti Prakash Singh, 2022. "Spam review detection using LSTM autoencoder: an unsupervised approach," Electronic Commerce Research, Springer, vol. 22(1), pages 113-133, March.
    3. Laura Böhm & Sebastian Kolb & Thomas Plankenbühler & Jonas Miederer & Simon Markthaler & Jürgen Karl, 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-25, September.
    4. Florian Rzepka & Philipp Hematty & Mano Schmitz & Julia Kowal, 2023. "Neural Network Architecture for Determining the Aging of Stationary Storage Systems in Smart Grids," Energies, MDPI, vol. 16(17), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
    2. Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
    3. Rainer Alt, 2021. "Electronic Markets on robotics," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 465-471, September.
    4. Abhirup Khanna & Bhawna Yadav Lamba & Sapna Jain & Vadim Bolshev & Dmitry Budnikov & Vladimir Panchenko & Alexandr Smirnov, 2023. "Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-33, June.
    5. Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
    6. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    7. Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
    8. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    9. Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    10. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    11. Thomas Grisold & Christian Janiesch & Maximilian Röglinger & Moe Thandar Wynn, 2022. "Call for Papers, Issue 5/2024," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 841-843, December.
    12. Joshua Holstein & Max Schemmer & Johannes Jakubik & Michael Vössing & Gerhard Satzger, 2023. "Sanitizing data for analysis: Designing systems for data understanding," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-18, December.
    13. Junwei Zhou & Yanguo Fan & Qingchun Guan & Guangyue Feng, 2024. "Research on Drought Monitoring Based on Deep Learning: A Case Study of the Huang-Huai-Hai Region in China," Land, MDPI, vol. 13(5), pages 1-20, May.
    14. Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
    15. Yuanyuan Yang & Md Muhie Menul Haque & Dongling Bai & Wei Tang, 2021. "Fault Diagnosis of Electric Motors Using Deep Learning Algorithms and Its Application: A Review," Energies, MDPI, vol. 14(21), pages 1-26, October.
    16. Patrick Zschech, 2023. "Beyond descriptive taxonomies in data analytics: a systematic evaluation approach for data-driven method pipelines," Information Systems and e-Business Management, Springer, vol. 21(1), pages 193-227, March.
    17. Wendou Yan & Xiuying Wang & Shoubiao Tan, 2022. "YOLO-DFAN: Effective High-Altitude Safety Belt Detection Network," Future Internet, MDPI, vol. 14(12), pages 1-12, November.
    18. Julius Peter Landwehr & Niklas Kühl & Jannis Walk & Mario Gnädig, 2022. "Design Knowledge for Deep-Learning-Enabled Image-Based Decision Support Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 707-728, December.
    19. Michael Weber & Martin Engert & Norman Schaffer & Jörg Weking & Helmut Krcmar, 2023. "Organizational Capabilities for AI Implementation—Coping with Inscrutability and Data Dependency in AI," Information Systems Frontiers, Springer, vol. 25(4), pages 1549-1569, August.
    20. Rashid Amin & Muzammal Majeed & Farrukh Shoukat Ali & Adeel Ahmed & Mudassar Hussain, 2022. "Reliability Awareness Multiple Path Installation in Software Defined Networking using Machine Learning Algorithm," International Journal of Innovations in Science & Technology, 50sea, vol. 4(5), pages 158-172, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2340-:d:1393427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.