IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2313-d1392233.html
   My bibliography  Save this article

Exploring Motion Stability of a Novel Semi-Submersible Platform for Offshore Wind Turbines

Author

Listed:
  • Hongxu Zhao

    (Department of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China)

  • Xiang Wu

    (Department of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China)

  • Zhou Zhou

    (Department of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
    Hunan Province Engineering Laboratory of Wind Power Operation, Maintenance and Testing Technology, Xiangtan 411104, China)

Abstract

The stability of offshore floating wind turbine foundation platforms is a fundamental requirement for the efficiency and safety of wind power generation systems. This paper proposes a novel small-diameter float-type semi-submersible platform to improve system stability. To evaluate the superior motion stability of the proposed floating platform, a comprehensive frequency–domain response analysis and experimental study were conducted in comparison with the OC4-DeepCwind platform developed by the National Renewable Energy Laboratory (NREL). The respective comparison of the frequency–domain response analysis and the experimental results demonstrated that the proposed floating wind turbine platform shows better hydrodynamic characteristics and resonance avoidance capability. This not only reduces the Response Amplitude Operators (RAOs), but also enhances the system stability, namely, effectively avoiding the regions of concentrated wave loading and low-frequency ranges. Furthermore, the proposed small-diameter semi-submersible platform has the potential to reduce manufacturing costs, providing valuable insights for the manufacturing of offshore floating wind turbine systems.

Suggested Citation

  • Hongxu Zhao & Xiang Wu & Zhou Zhou, 2024. "Exploring Motion Stability of a Novel Semi-Submersible Platform for Offshore Wind Turbines," Energies, MDPI, vol. 17(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2313-:d:1392233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2313/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2313/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Xinmeng & Shao, Yanlin & Feng, Xingya & Xu, Kun & Jin, Ruijia & Li, Huajun, 2024. "Nonlinear hydrodynamics of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Yang Ni & Bin Peng & Jiayao Wang & Farshad Golnary & Wei Li, 2023. "A Short Review on the Time-Domain Numerical Simulations for Structural Responses in Horizontal-Axis Offshore Wind Turbines," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    3. Ramon Varghese & Vikram Pakrashi & Subhamoy Bhattacharya, 2022. "A Compendium of Formulae for Natural Frequencies of Offshore Wind Turbine Structures," Energies, MDPI, vol. 15(8), pages 1-31, April.
    4. Javier López-Queija & Eider Robles & Jose Ignacio Llorente & Imanol Touzon & Joseba López-Mendia, 2022. "A Simplified Modeling Approach of Floating Offshore Wind Turbines for Dynamic Simulations," Energies, MDPI, vol. 15(6), pages 1-16, March.
    5. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Bowen Zhou & Zhibo Zhang & Guangdi Li & Dongsheng Yang & Matilde Santos, 2023. "Review of Key Technologies for Offshore Floating Wind Power Generation," Energies, MDPI, vol. 16(2), pages 1-26, January.
    7. Emilio García & Antonio Correcher & Eduardo Quiles & Fernando Tamarit & Francisco Morant, 2022. "Control and Supervision Requirements for Floating Hybrid Generator Systems," IJERPH, MDPI, vol. 19(19), pages 1-22, October.
    8. DAY, Christopher James, 2022. "Why industrial location matters in a low-carbon economy," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 283-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2313-:d:1392233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.