IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2305-d1392111.html
   My bibliography  Save this article

Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications

Author

Listed:
  • Iñigo Martínez de Alegría

    (Applied Electronics Research Team (APERT), University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain)

  • Iñigo Rozas Holgado

    (Applied Electronics Research Team (APERT), University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain)

  • Edorta Ibarra

    (Applied Electronics Research Team (APERT), University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain)

  • Eider Robles

    (Tecnalia, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia Astondo Bidea, 48160 Derio, Spain)

  • José Luís Martín

    (Applied Electronics Research Team (APERT), University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain)

Abstract

Unmanned underwater vehicles (UUVs) are key technologies to conduct preventive inspection and maintenance tasks in offshore renewable energy plants. Making such vehicles autonomous would lead to benefits such as improved availability, cost reduction and carbon emission minimization. However, some technological aspects, including the powering of these devices, remain with a long way to go. In this context, underwater wireless power transfer (UWPT) solutions have potential to overcome UUV powering drawbacks. Considering the relevance of this topic for offshore renewable plants, this work aims to provide a comprehensive summary of the state of the art regarding UPWT technologies. A technology intelligence study is conducted by means of a bibliographical survey. Regarding underwater wireless power transfer, the main methods are reviewed, and it is concluded that inductive wireless power transfer (IWPT) technologies have the most potential. These inductive systems are described, and their challenges in underwater environments are presented. A review of the underwater IWPT experiments and applications is conducted, and innovative solutions are listed. Achieving efficient and reliable UWPT technologies is not trivial, but significant progress is identified. Generally, the latest solutions exhibit efficiencies between 88% and 93% in laboratory settings, with power ratings reaching up to 1–3 kW. Based on the assessment, a power transfer within the range of 1 kW appears to be feasible and may be sufficient to operate small UUVs. However, work-class UUVs require at least a tenfold power increase. Thus, although UPWT has advanced significantly, further research is required to industrially establish these technologies.

Suggested Citation

  • Iñigo Martínez de Alegría & Iñigo Rozas Holgado & Edorta Ibarra & Eider Robles & José Luís Martín, 2024. "Wireless Power Transfer for Unmanned Underwater Vehicles: Technologies, Challenges and Applications," Energies, MDPI, vol. 17(10), pages 1-35, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2305-:d:1392111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Machura, Philip & Li, Quan, 2019. "A critical review on wireless charging for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 209-234.
    2. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    4. Jung, Hyunjun & Subban, Chinmayee V. & McTigue, Joshua Dominic & Martinez, Jayson J. & Copping, Andrea E. & Osorio, Julian & Liu, Jian & Deng, Z. Daniel, 2022. "Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    5. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Juan Pablo Ochoa Avilés & Fernando Lessa Tofoli & Enio Roberto Ribeiro, 2023. "Novel Control Approach for Resonant Class-DE Inverters Applied in Wireless Power Transfer Systems," Energies, MDPI, vol. 16(21), pages 1-18, October.
    3. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Arias, Francisco J., 2023. "The thermodynamic limit of extractable kinetic energy buoyancy engine," Applied Energy, Elsevier, vol. 350(C).
    5. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Mudassir Khan & A. Ilavendhan & C. Nelson Kennedy Babu & Vishal Jain & S. B. Goyal & Chaman Verma & Calin Ovidiu Safirescu & Traian Candin Mihaltan, 2022. "Clustering Based Optimal Cluster Head Selection Using Bio-Inspired Neural Network in Energy Optimization of 6LowPAN," Energies, MDPI, vol. 15(13), pages 1-14, June.
    8. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    9. Zhang, Yachao & Xie, Shiwei & Shu, Shengwen, 2022. "Multi-stage robust optimization of a multi-energy coupled system considering multiple uncertainties," Energy, Elsevier, vol. 238(PC).
    10. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    11. Stanisław Iwan & Mariusz Nürnberg & Artur Bejger & Kinga Kijewska & Krzysztof Małecki, 2021. "Unloading Bays as Charging Stations for EFV-Based Urban Freight Delivery System—Example of Szczecin," Energies, MDPI, vol. 14(18), pages 1-22, September.
    12. Lianling Ren & Wei Liao & Jun Chen, 2024. "Systematic Design and Implementation Method of Battery-Energy Comprehensive Management Platform in Charging and Swapping Scenarios," Energies, MDPI, vol. 17(5), pages 1-13, March.
    13. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    14. Mukhtar Sani & Maxime Piffard & Vincent Heiries, 2023. "Fault Detection for PEM Fuel Cells via Analytical Redundancy: A Critical Review and Prospects," Energies, MDPI, vol. 16(14), pages 1-16, July.
    15. Blanka Tundys & Tomasz Wiśniewski, 2023. "Smart Mobility for Smart Cities—Electromobility Solution Analysis and Development Directions," Energies, MDPI, vol. 16(4), pages 1-20, February.
    16. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    17. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    18. George Stamatellos & Antiopi-Malvina Stamatellou, 2024. "The Interaction between Short- and Long-Term Energy Storage in an nZEB Office Building," Energies, MDPI, vol. 17(6), pages 1-27, March.
    19. Tan, Zhen & Liu, Fan & Chan, Hing Kai & Gao, H. Oliver, 2022. "Transportation systems management considering dynamic wireless charging electric vehicles: Review and prospects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    20. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2305-:d:1392111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.