IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2257-d1390316.html
   My bibliography  Save this article

A Comprehensive Review on Advanced Control Methods for Floating Offshore Wind Turbine Systems above the Rated Wind Speed

Author

Listed:
  • Flavie Didier

    (Energy Department, FEMTO-ST Institute (UMR 6174), Université de Franche-Comté, UTBM, CNRS, 90010 Belfort, France)

  • Yong-Chao Liu

    (Energy Department, FEMTO-ST Institute (UMR 6174), Université de Franche-Comté, UTBM, CNRS, 90010 Belfort, France)

  • Salah Laghrouche

    (Energy Department, FEMTO-ST Institute (UMR 6174), Université de Franche-Comté, UTBM, CNRS, 90010 Belfort, France)

  • Daniel Depernet

    (Energy Department, FEMTO-ST Institute (UMR 6174), Université de Franche-Comté, UTBM, CNRS, 90010 Belfort, France)

Abstract

This paper presents a comprehensive review of advanced control methods specifically designed for floating offshore wind turbines (FOWTs) above the rated wind speed. Focusing on primary control objectives, including power regulation at rated values, platform pitch mitigation, and structural load reduction, this paper begins by outlining the requirements and challenges inherent in FOWT control systems. It delves into the fundamental aspects of the FOWT system control framework, thereby highlighting challenges, control objectives, and conventional methods derived from bottom-fixed wind turbines. Our review then categorizes advanced control methods above the rated wind speed into three distinct approaches: model-based control, data-driven model-based control, and data-driven model-free control. Each approach is examined in terms of its specific strengths and weaknesses in practical application. The insights provided in this review contribute to a deeper understanding of the dynamic landscape of control strategies for FOWTs, thus offering guidance for researchers and practitioners in the field.

Suggested Citation

  • Flavie Didier & Yong-Chao Liu & Salah Laghrouche & Daniel Depernet, 2024. "A Comprehensive Review on Advanced Control Methods for Floating Offshore Wind Turbine Systems above the Rated Wind Speed," Energies, MDPI, vol. 17(10), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2257-:d:1390316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
    2. Keighobadi, Jafar & Mohammadian KhalafAnsar, Hadi & Naseradinmousavi, Peiman, 2022. "Adaptive neural dynamic surface control for uniform energy exploitation of floating wind turbine," Applied Energy, Elsevier, vol. 316(C).
    3. Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
    4. Feng Yang & Qing-wang Song & Lei Wang & Shan Zuo & Sheng-shan Li, 2014. "Wind and Wave Disturbances Compensation to Floating Offshore Wind Turbine Using Improved Individual Pitch Control Based on Fuzzy Control Strategy," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-10, March.
    5. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    6. Li, Gong & Shi, Jing, 2012. "Applications of Bayesian methods in wind energy conversion systems," Renewable Energy, Elsevier, vol. 43(C), pages 1-8.
    7. Sfetsos, A., 2002. "A novel approach for the forecasting of mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 27(2), pages 163-174.
    8. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    9. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shah, Kamran Ali & Meng, Fantai & Li, Ye & Nagamune, Ryozo & Zhou, Yarong & Ren, Zhengru & Jiang, Zhiyu, 2021. "A synthesis of feasible control methods for floating offshore wind turbine system dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Jiang, Ping & Wang, Yun & Wang, Jianzhou, 2017. "Short-term wind speed forecasting using a hybrid model," Energy, Elsevier, vol. 119(C), pages 561-577.
    3. He, Qingqing & Wang, Jianzhou & Lu, Haiyan, 2018. "A hybrid system for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 226(C), pages 756-771.
    4. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    5. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
    6. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    7. Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
    8. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    9. Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
    10. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Error analysis of short term wind power prediction models," Applied Energy, Elsevier, vol. 88(4), pages 1298-1311, April.
    11. Emeksiz, Cem & Tan, Mustafa, 2022. "Multi-step wind speed forecasting and Hurst analysis using novel hybrid secondary decomposition approach," Energy, Elsevier, vol. 238(PA).
    12. Jianguo Zhou & Xuechao Yu & Baoling Jin, 2018. "Short-Term Wind Power Forecasting: A New Hybrid Model Combined Extreme-Point Symmetric Mode Decomposition, Extreme Learning Machine and Particle Swarm Optimization," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    13. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    14. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    15. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    16. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    17. Fang, Ping & Fu, Wenlong & Wang, Kai & Xiong, Dongzhen & Zhang, Kai, 2022. "A compositive architecture coupling outlier correction, EWT, nonlinear Volterra multi-model fusion with multi-objective optimization for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 307(C).
    18. Tascikaraoglu, Akin & Sanandaji, Borhan M. & Poolla, Kameshwar & Varaiya, Pravin, 2016. "Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform," Applied Energy, Elsevier, vol. 165(C), pages 735-747.
    19. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    20. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2257-:d:1390316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.