IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2243-d1389655.html
   My bibliography  Save this article

Optimized Dynamic Vehicle-to-Vehicle Charging for Increased Profit

Author

Listed:
  • Shorooq Alaskar

    (Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

  • Mohamed Younis

    (Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA)

Abstract

Many challenges have arisen as a result of the rapid growth of the electric vehicles (EVs) market, due to the lack of charging infrastructure capable of handling such a large number of EVs. To alleviate power grid system overloads and reduce the cost of corresponding infrastructure deployments, a direct vehicle-to-vehicle (V2V) energy exchange strategy has become an emerging research topic. In this paper, we formulate the problem of V2V energy charging on a time–space network and develop a dynamic-programming solution methodology for efficiently finding the solution. The algorithm can pair and route the energy supplier (ES) and the requester (ER) in such a way that maximizes the supplier’s profit. Specifically, the ES is incentivized to rendezvous ERs at any encounter nodes in order to dispense the requested energy amount through platooning. Unlike existing V2V charging solutions, our approach involves charging while vehicles are in motion. We validate the effectiveness of our approach in maximizing the profit of the ES and reducing the incurred overhead on the ER in terms of increased trip time, distance, and energy consumption.

Suggested Citation

  • Shorooq Alaskar & Mohamed Younis, 2024. "Optimized Dynamic Vehicle-to-Vehicle Charging for Increased Profit," Energies, MDPI, vol. 17(10), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2243-:d:1389655
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yaoli & Liu, Xingyu & Wei, Wenshen & Peng, Tianji & Hong, Gang & Meng, Chao, 2020. "Mobile charging: A novel charging system for electric vehicles in urban areas," Applied Energy, Elsevier, vol. 278(C).
    2. Frank Schneider & Ulrich W. Thonemann & Diego Klabjan, 2018. "Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations," Transportation Science, INFORMS, vol. 52(5), pages 1211-1234, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    2. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    3. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    4. Cui, Shaohua & Ma, Xiaolei & Zhang, Mingheng & Yu, Bin & Yao, Baozhen, 2022. "The parallel mobile charging service for free-floating shared electric vehicle clusters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    5. Zhang, Junxia & Li, Xingmei & Jia, Dongqing & Zhou, Yuexin, 2023. "A Bi-level programming for union battery swapping stations location-routing problem under joint distribution and cost allocation," Energy, Elsevier, vol. 272(C).
    6. Huang, Shuai & Fan, Zhi-Ping & Wang, Ningning, 2020. "Green subsidy modes and pricing strategy in a capital-constrained supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    7. Ouyang, Xu & Xu, Min, 2022. "Promoting green transportation under the belt and Road Initiative: Locating charging stations considering electric vehicle users’ travel behavior," Transport Policy, Elsevier, vol. 116(C), pages 58-80.
    8. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    9. Wang, Jiawei & Guo, Qinglai & Sun, Hongbin & Chen, Min, 2023. "Collaborative optimization of logistics and electricity for the mobile charging service system," Applied Energy, Elsevier, vol. 336(C).
    10. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Yu Feng & Xiaochun Lu, 2021. "Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-19, December.
    12. Wang, Yaxian & Zhao, Zhenli & Baležentis, Tomas, 2023. "Benefit distribution in shared private charging pile projects based on modified Shapley value," Energy, Elsevier, vol. 263(PB).
    13. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2021. "Electric vehicles and charging infrastructure in Turkey: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    14. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    15. Lingshu Zhong & Mingyang Pei, 2020. "Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate," Energies, MDPI, vol. 13(5), pages 1-16, March.
    16. Shuna Wang & Zhi-Hua Hu, 2021. "Green Logistics Service Supply Chain Games Considering Risk Preference in Fuzzy Environments," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
    17. Tang, Juan & Ji, Guan-Qun & Liu, Zhi & Sheu, Jiuh-Biing, 2024. "Electric vehicle battery-charging service and operations managing under different charging station construction modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    18. Afshar, Shahab & Pecenak, Zachary K. & Barati, Masoud & Disfani, Vahid, 2022. "Mobile charging stations for EV charging management in urban areas: A case study in Chattanooga," Applied Energy, Elsevier, vol. 325(C).
    19. Li, Linman & Li, Yuqing & Liu, Ran & Zhou, Yaoming & Pan, Ershun, 2023. "A Two-stage Stochastic Programming for AGV scheduling with random tasks and battery swapping in automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    20. Xin Wang & Jinfeng Wang & Chunqiu Xu & Ke Zhang & Guo Li, 2023. "Electric Vehicle Charging Infrastructure Policy Analysis in China: A Framework of Policy Instrumentation and Industrial Chain," Sustainability, MDPI, vol. 15(3), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2243-:d:1389655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.